这题正解应该是扫描线,就是发现DP的区间在两个维度都为连续段,于是可以直接扫描线。但不幸的是,扫描线常数过大,无法通过本题。

考虑分治。对于分治区间[l,r],可以记录pre和nxt表示其前/后一次出现的位置,每当遇到一个出现次数=1的数,可以直接把区间分为两半判断,反之则丢掉这个数,而仅会分治一次,且掐断地方是先判两边,复杂度近似O(nlogn)。

实在太坑了,其实是一道练习扫描线的好题qwq

#include<cstdio>
#include<algorithm>
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
const int N=2e5+;
typedef long long ll;
struct line{int x,l,r,v;}c[N<<];
int n,m,a[N],b[N],L[N],R[N],pre[N],sum[N<<],cnt[N<<];
bool cmp(line a,line b){return a.x<b.x;}
void insert(int a1,int a2,int b1,int b2)
{c[++m]=(line){a1,b1,b2,},c[++m]=(line){a2+,b1,b2,-};}
void build(int l,int r,int rt)
{
sum[rt]=cnt[rt]=;
if(l==r)return;
int mid=l+r>>;
build(lson),build(rson);
}
void pushup(int l,int r,int rt)
{
if(cnt[rt])sum[rt]=r-l+;
else if(l==r)sum[rt]=;
else sum[rt]=sum[rt<<]+sum[rt<<|];
}
void update(int L,int R,int v,int l,int r,int rt)
{
if(L<=l&&r<=R){cnt[rt]+=v,pushup(l,r,rt);return;}
int mid=l+r>>;
if(L<=mid)update(L,R,v,lson);
if(R>mid)update(L,R,v,rson);
pushup(l,r,rt);
}
int main()
{
int T;scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
build(,n,);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+n+);
m=unique(b+,b+n+)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b+m+,a[i])-b;
m=;
for(int i=;i<=n;i++)pre[i]=;
for(int i=;i<=n;i++)L[i]=pre[a[i]],pre[a[i]]=i;
for(int i=;i<=n;i++)pre[i]=n+;
for(int i=n;i;i--)R[i]=pre[a[i]],pre[a[i]]=i;
for(int i=;i<=n;i++)insert(L[i]+,i,i,R[i]-);
sort(c+,c+m+,cmp);
ll ans=;
for(int i=,p=;i<=n;i++)
{
while(p<m&&c[p+].x==i)p++,update(c[p].l,c[p].r,c[p].v,,n,);
ans+=sum[];
}
if(ans==1ll*n*(n+)/)puts("non-boring");
else puts("boring");
}
}

扫描线的TLE代码

#include<cstdio>
#include<algorithm>
#include<map>
using namespace std;
const int N=2e5+;
int n,m,a[N],pre[N],nxt[N];
map<int,int>lst;
bool solve(int l,int r)
{
if(l>=r)return ;
int p=l,q=r;
while(p<=q)
{
if(pre[p]<l&&nxt[p]>r)return solve(l,p-)&&solve(p+,r);p++;
if(pre[q]<l&&nxt[q]>r)return solve(l,q-)&&solve(q+,r);q--;
}
return ;
}
int main()
{
int T;scanf("%d",&T);
while(T--)
{
lst.clear();
scanf("%d",&n);
for(int i=,pos;i<=n;i++)scanf("%d",&a[i]),pos=lst[a[i]],nxt[pos]=i,pre[i]=pos,lst[a[i]]=i;
for(int i=;i<=n;i++)nxt[lst[a[i]]]=n+;
if(solve(,n))puts("non-boring");else puts("boring");
}
}

分治的AC代码

BZOJ4059[Cerc2012]Non-boring sequences(扫描线/分治)的更多相关文章

  1. bzoj4059 [Cerc2012]Non-boring sequences && bzoj5200 [NWERC2017]Factor-Free Tree

    https://konnyakuxzy.github.io/BZPRO/JudgeOnline/4059.html https://cn.vjudge.net/problem/Gym-100624D ...

  2. 【启发式拆分】bzoj4059: [Cerc2012]Non-boring sequences

    这个做法名字是从武爷爷那里看到的…… Description 我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短.一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子 ...

  3. bzoj4059 [Cerc2012]Non-boring sequences

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4059 [题解] 考虑分治.定义过程solve(l,r)为判断全在[l,r]范围内的所有连续子 ...

  4. BZOJ 4059: [Cerc2012]Non-boring sequences(启发式分治)

    传送门 解题思路 首先可以想到要预处理一个\(nxt_i\)和\(pre_i\),表示前后与当前位置权值相同的节点,那么这样可以迅速算出某个点在某段区间是否出现多次.然后这样的话就考虑分治,对于\([ ...

  5. UVA1608-Non-boring sequences(分治)

    Problem UVA1608-Non-boring sequences Accept: 227  Submit: 2541Time Limit: 3000 mSec Problem Descript ...

  6. Non-boring sequences(启发式分治)

    题意:一个序列被称作是不无聊的,当且仅当,任意一个连续子区间,存在一个数字只出现了一次,问给定序列是否是不无聊的. 思路:每次找到一个只出现了一次的点,其位置的pos,那么继续分治[L,pos-1], ...

  7. UVA - 1608 Non-boring sequences (分治)

    题意:如果一个序列的任意连续子序列中至少有一个只出现一次的元素,则称这个序列式为non-boring.输入一个n(n≤200000)个元素的序列A(各个元素均为109以内的非负整数),判断它是否无聊. ...

  8. HDU 5324 Boring Class CDQ分治

    题目传送门 题目要求一个3维偏序点的最长子序列,并且字典序最小. 题解: 这种题目出现的次数特别多了.如果不需要保证字典序的话直接cdq就好了. 这里需要维护字典序的话,我们从后往前配对就好了,因为越 ...

  9. 【刷题】BZOJ 4059 [Cerc2012]Non-boring sequences

    Description 我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短.一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子序列里至少存在一个数字只出现一次.给定 ...

随机推荐

  1. 解决Spring Mvc中接受参数绑定重名的方法

    html页面 <form method='post' action='url'> 用户名 <input type='text' name='name'> 用户id <in ...

  2. CodeForces - 402B Trees in a Row (暴力)

    题意:给定n个数,要求修改其中最少的数,使得这n个数满足ai + 1 - ai = k. 分析: 暴力,1000*1000. 1.这n个数,就是一个首项为a1,公差为k的等差数列.k已知,如果确定了a ...

  3. POJ 2593&&2479:Max Sequence

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16329   Accepted: 6848 Des ...

  4. 关于SI522替代FM17522和MFRC522的资料对比

    以下是SI522与FM17522.MFRC522的对比参数: SI522是完全PIN对PIN软硬件兼容MFRC522.CV520.FM17522,另外我们可提供一对一技术支持解决客户所遇到的问题: 1 ...

  5. OFD系列软件说明(免费试用、QQ交流群:877371250)

    前言 OFD是一个版式文档格式.所谓版式文档格式是版面呈现效果固定的电子文档格式. 我们今天接触到最多的版式文档就是国际通用的PDF. 国内的就是由工业和信息化部软件司牵头中国电子技术标准化研究院成立 ...

  6. Python属性和内建属性

    属性property 1. 私有属性添加getter和setter方法 class Money(object): def __init__(self): self.__money = 0 def ge ...

  7. 二十八、CI框架之自己写分页类,符合CI的路径规范

    一.参照了CSDN上某个前辈写的一个CI分页类,自己删删改改仿写了一个类似的分页类,代码如下: 二.我们在模型里面写2个数据查询的函数,一个用于查询数据数量,一个用于查询出具体数据 三.我们在控制器里 ...

  8. SQL注入类型

    本文转自:https://www.cnblogs.com/cui0x01/p/6322826.html Sql注入_类型 1.sql注入 通过把SQL命令插入到Web表单提交或输入域名或页面请求的查询 ...

  9. 学习spring的第二天

    对昨天的查漏:关于<bean>标签的scope属性,是由它决定原型和单例的,而不是说你java代码中用到了单例模式就是单例了. 其二就是lazy-init属性,它对于scope=" ...

  10. 一个算法题--Self Crossing

    You are given an array x of n positive numbers. You start at point (0,0) and moves x[0] metres to th ...