http://acm.hdu.edu.cn/showproblem.php?pid=1023

如果把栈里面的元素个数表示成状态,每一步(共2 * n步)的状态构成的状态序列的种数就是答案,令dp[i][j]表示第i步栈的状态为j的方案数,则有:

dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j + 1],+1、-1相当于进栈和出栈,需考虑边界条件,详见代码(答案太大,需用大数):

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <stack>
#include <string>
#include <ctime>
#include <queue>
#define mem0(a) memset(a, 0, sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define eps 0.0000001
#define lowbit(x) ((x) & -(x))
#define memc(a, b) memcpy(a, b, sizeof(b))
#define x_x(a) ((a) * (a))
#define LL __int64
#define DB double
#define pi 3.14159265359
#define MD 10000007
#define INF (int)1e9
using namespace std;
struct BigNum{
#define maxlen 10
#define memc(a, b) memcpy(a, b, sizeof(b))
#define mem0(a) memset(a, 0, sizeof(a))
typedef __int64 Num[maxlen + ];
Num num;
char s[maxlen + ];
BigNum operator+(BigNum num2) {
BigNum ans;
mem0(ans.num);
for(int i = ; i <= maxlen; i++) {
ans.num[i] += num[i] + num2.num[i];
ans.num[i + ] += ans.num[i] / (int)1e9;
ans.num[i] %= (int)1e9;
}
return ans;
}
BigNum operator*(BigNum num2) {
BigNum ans;
mem0(ans.num);
for(int i = ; i <= maxlen; i++) {
for(int j = ; j <= maxlen; j++) {
if(i + j - <= maxlen) {
ans.num[i + j - ] += num[i] * num2.num[j];
ans.num[i + j] += ans.num[i + j - ] / (int)1e9;
ans.num[i + j - ] %= (int)1e9;
}
}
}
return ans;
}
void convert() {
int len = strlen(s), cnt = ;
for(int i = len - ; i >= ; i -= ) {
int p = , x = , t = ;
while(i - p >= && p < ) {
x += t * (s[i - p] - '');
p++;
t *= ;
}
num[++cnt] = x;
}
}
void inp() {
mem0(num);
scanf("%s", s);
convert();
}
void outp() {
int p = ;
for(int i = maxlen; i >= ; i--) {
if(num[i]) {
p = i;
break;
}
}
cout<< num[p];
while(--p) {
int a[] = {}, x = num[p];
for(int i = ; i < ; i++) {
a[i] = x % ;
x /= ;
}
for(int i = ; i >= ; i--) {
printf("%d", a[i]);
}
}
}
BigNum(char str[]) {
strcpy(s, str);
mem0(num);
convert();
}
BigNum(){}
};
BigNum f[][];
int main()
{
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
int n;
while(~scanf("%d", &n)) {
mem0(f);
f[][] = BigNum("");
for(int i = ; i <= * n; i++) {
for(int j = ; j <= n; j++) {
f[i][j] = f[i - ][j + ];
if(j) f[i][j] = f[i][j] + f[i - ][j - ];
}
}
f[ * n][].outp();
cout<< endl;
}
return ;
}

[hdu1023]递推的更多相关文章

  1. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  2. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  3. Flags-Ural1225简单递推

    Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...

  4. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. 简单递推 HDU-2108

    要成为一个ACMer,就是要不断学习,不断刷题...最近写了一些递推,发现递推规律还是挺明显的,最简单的斐波那契函数(爬楼梯问题),这个大家应该都会,看一点稍微进阶了一点的,不是简单的v[i] = v ...

  7. [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索

    1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...

  8. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  9. openjudge1768 最大子矩阵[二维前缀和or递推|DP]

    总时间限制:  1000ms 内存限制:  65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...

随机推荐

  1. 最短路径变形 POJ 2253

    Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sit ...

  2. TCP基础概念

    定义 传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的.可靠的.基于字节流的传输层通信协议 特点 TCP是一种面向广域网的通信协议,目的是在跨越多个网 ...

  3. cmd 文件/文件夹的一切操作

    dir // 列出目录下所有文件夹 rd dirname // 删除dirname文件夹(空文件夹) rd /s/q dirname // 删除dirname文件夹(非空)

  4. 8. input限制手机输入

    1. 只能输入数字: <input id="num" type="number" value="0" onkeyup="va ...

  5. 掌握游戏开发中类Message、Handle

    1.   实验目的 1. 自主地设计图形界面 2. 掌握消息类Message的应用 3. 掌握消息处理类Handle的应用 4. 掌握子线程中中更新UI界面的方法 2.  实验内容 1. 在主界面设置 ...

  6. 数据库SQL---数据库系统概论

    1.基本术语 1)信息:指数据加工处理后有用的数据. 2)信息的3种世界: (1)现实世界:存在于人脑之外的客观世界. (2)信息世界:现实世界在人脑中的反映. (3)数据世界:将信息世界中的信息通过 ...

  7. GOLANG 闭包和普通函数的区别

    闭包和匿名函数是一回事 闭包使用完毕之后不会自动释放,值依然存在 普通函数调用完毕后,值会自动释放

  8. (第一篇)linux简介与发展历史以及软件的安装

    1.Linux操作系统基本结构介绍: 操作系统: 英文名称Operating System,简称OS,是计算机系统中必不可少的基础系统软件,它是应用程序运行以及用户操作必备的基础环境支撑,是计算机系统 ...

  9. ansible的剧本play(四)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA68AAAETCAYAAADZDzDOAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjw

  10. 用百度AI平台接口实现OCR文字识别

    目录 一.接入指南 1.注册 2.登录 3.创建应用 二.安装接口模型 三.编写python代码 四.识别结果 一.接入指南 若想利用百度AI开放平台进行软件开发,首先应成为百度AI开放平台的开发者. ...