题意:http://acm.hdu.edu.cn/showproblem.php?pid=5381

思路:这个题属于没有修改的区间查询问题,可以用莫队算法来做。首先预处理出每个点以它为起点向左和向右连续一段的gcd发生变化的每个位置,不难发现对每个点A[i],这样的位置最多logA[i]个,这可以利用ST表用nlognlogA[i]的时间预处理,然后用二分+RMQ在nlogn的时间内得到。然后就是区间变化为1时的转移了,不难发现区间变化为1时,变化的答案仅仅是以变化的那一个点作为左端点或右端点的连续子串的gcd的和,而这个gcd最多logA[i]种,利用前面的预处理可以在logA[i]的时间内累加得到答案。总复杂度O(NlogNlogA[i]+N√NlogA[i])

  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define copy(a, b) memcpy(a, b, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull; //#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?:-;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
//#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);} const double PI = acos(-1.0);
const int INF = 1e9 + ;
const double EPS = 1e-8; /* -------------------------------------------------------------------------------- */ const int maxn = 1e4 + ; int gcd(int a, int b) {
return b? gcd(b, a % b) : a;
} struct ST {
int dp[maxn][];
int index[maxn];
void init_index() {
index[] = ;
for (int i = ; i < maxn; i ++) {
index[i] = index[i - ];
if (!(i & (i - ))) index[i] ++;
}
}
void init_gcd(int a[], int n) {
for (int i = ; i < n; i ++) dp[i][] = a[i];
for (int j = ; ( << j) <= n; j ++) {
for (int i = ; i + ( << j) - < n; i ++) {
dp[i][j] = gcd(dp[i][j - ], dp[i + ( << (j - ))][j - ]);
}
}
} int query_gcd(int L, int R) {
int p = index[R - L + ];
return gcd(dp[L][p], dp[R - ( << p) + ][p]);
}
};
ST st; int n, q, block;
int a[maxn];
vector<int> L[maxn], R[maxn];
pair<pii, int> b[maxn]; bool cmp(const pair<pii, int> &a, const pair<pii, int> &b) {
int lb = a.X.X / block, rb = b.X.X / block;
return lb == rb? a.X.Y < b.X.Y : lb < rb;
} void init() {
for (int i = ; i < n; i ++) {
L[i].clear();
R[i].clear();
}
for (int i = ; i < n; i ++) {
int u = i;
R[i].pb(i - );
while (u < n) {
int l = u, r = n - ;
while (l < r) {
int m = (l + r + ) >> ;
if (st.query_gcd(i, m) == st.query_gcd(i, u)) l = m;
else r = m - ;
}
u = l + ;
R[i].pb(l);
}
}
for (int i = ; i < n; i ++) {
int u = i;
L[i].pb(i + );
while (u >= ) {
int l = , r = u;
while (l < r) {
int m = (l + r) >> ;
if (st.query_gcd(m, i) == st.query_gcd(u, i)) r = m;
else l = m + ;
}
u = l - ;
L[i].pb(l);
}
}
} ll f(int l, int r) {
ll ans = ;
for (int i = ; i < R[l].size(); i ++) {
if (r <= R[l][i]) return ans + (ll)(r - R[l][i - ]) * st.query_gcd(l, r);
ans += (ll)(R[l][i] - R[l][i - ]) * st.query_gcd(l, R[l][i]);
}
} ll g(int l, int r) {
ll ans = ;
for (int i = ; i < L[r].size(); i ++) {
if (l >= L[r][i]) return ans + (ll)(L[r][i - ] - l) * st.query_gcd(l, r);
ans += (ll)(L[r][i - ] - L[r][i]) * st.query_gcd(L[r][i], r);
}
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
int T;
cin >> T;
st.init_index();
while (T --) {
cin >> n;
block = (int)sqrt(n + 0.1);
for (int i = ; i < n; i ++) {
scanf("%d", a + i);
}
st.init_gcd(a, n);
init();
cin >> q;
for (int i = ; i < q; i ++) {
scanf("%d%d", &b[i].X.X, &b[i].X.Y);
b[i].X.X --;
b[i].X.Y --;
b[i].Y = i;
}
sort(b, b + q, cmp);
vector<ll> ans(q);
ll lastans = a[];
int lastl = , lastr = ;
/** 注意区间变化的顺序,优先考虑扩大区间,保证任何时刻区间不为负 */
for (int i = ; i < q; i ++) {
while (lastl > b[i].X.X) {
lastl --;
lastans += f(lastl, lastr);
}
while (lastr < b[i].X.Y) {
lastr ++;
lastans += g(lastl, lastr);
}
while (lastl < b[i].X.X) {
lastans -= f(lastl, lastr);
lastl ++;
}
while (lastr > b[i].X.Y) {
lastans -= g(lastl, lastr);
lastr --;
}
ans[b[i].Y] = lastans;
}
for (int i = ; i < q; i ++) {
printf("%I64d\n", ans[i]);
}
}
return ;
}

hdu5381 The sum of gcd]莫队算法的更多相关文章

  1. HDOJ 5381 The sum of gcd 莫队算法

    大神题解: http://blog.csdn.net/u014800748/article/details/47680899 The sum of gcd Time Limit: 2000/1000 ...

  2. HDU-4676 Sum Of Gcd 莫队+欧拉函数

    题意:给定一个11~nn的全排列AA,若干个询问,每次询问给出一个区间[l,r][l,r],要求得出∑l≤i<j≤r  gcd(Ai,Aj)的值. 解法:这题似乎做的人不是很多,蒟蒻当然不会做只 ...

  3. Hdu5381-The sum of gcd(莫队)

    题意我就不说了   解析: 莫队,先预处理出以i为右端点的区间的gcd值,有一些连续的区间的gcd值是相同的,比如[j,i],[j+1,i],[j+2,i]的gcd值是相同的,我们可以把[j,j+2] ...

  4. hdu 5381 The sum of gcd 莫队+预处理

    The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) P ...

  5. hdu 4676 Sum Of Gcd 莫队+phi反演

    Sum Of Gcd 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4676 Description Given you a sequence of ...

  6. hdu 4676 Sum Of Gcd 莫队+数论

    题目链接 给n个数, m个询问, 每个询问给出[l, r], 问你对于任意i, j.gcd(a[i], a[j]) L <= i < j <= R的和. 假设两个数的公约数有b1, ...

  7. HDU5381【莫队算法+区间GCD特性】

    前言: 主要最近在刷莫队的题,这题GCD的特性让我对莫队的使用也有了新的想法.给福利:神犇的一套莫队算法题 先撇开题目,光说裸的一个莫队算法,主要的复杂度就是n*sqrt(n)对吧,这里我忽略了一个左 ...

  8. HDU 5381 The sum of gcd (技巧,莫队算法)

    题意:有一个含n个元素的序列,接下来有q个询问区间,对每个询问区间输出其 f(L,R) 值. 思路: 天真单纯地以为是道超级水题,不管多少个询问,计算量顶多就是O(n2) ,就是暴力穷举每个区间,再直 ...

  9. 【BZOJ】2038: [2009国家集训队]小Z的袜子(hose)(组合计数+概率+莫队算法+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2038 学了下莫队,挺神的orzzzz 首先推公式的话很简单吧... 看的题解是从http://for ...

随机推荐

  1. Java 8 到 Java 14,改变了哪些你写代码的方式?

    前几天,JDK 14 正式发布了,这次发布的新版本一共包含了16个新的特性. 其实,从Java8 到 Java14 ,真正的改变了程序员写代码的方式的特性并不多,我们这篇文章就来看一下都有哪些. La ...

  2. 如何在Ubuntu 18.04上安装Nginx

    Nginx功能之强大,想必大家比我更清楚. 百度百科:Nginx (engine x) 是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务.Nginx是由伊戈尔 ...

  3. PHP函数:array_chunk

    array_chunk()  -  将一个数组分割成多个. 说明: array_chunk ( array $array , int $size [, bool $preserve_keys = fa ...

  4. 2020.4面试分享(7面收5个offer)

    都说金三银四是找工作的最佳时节,由于本人的个人职业规划跟目前工作内容不太相符(具体原因就不透露了,领导平时也要来这里逛,哈哈),四月份挑选了10多家公司投递简历(公司规模从几十人到上万人都有),参加了 ...

  5. python3爬虫 爬取动漫视频

    起因 因为本人家里有时候网速不行,所以看动漫的时候播放器总是一卡一卡的,看的太难受了.闲暇无聊又F12看看.但是动漫网站却无法打开控制台.这就勾起了我的兴趣.正好反正无事,去寻找下视频源. 但是这里事 ...

  6. ios快捷指令编程尝试

    最近,,,啊好几个月了,发现这个ios的快捷指令很好玩 原生就提供了不少功能 用来练习编程思维是十分有用啊...) 其次呢,还可以使用外接的功能对原有的功能进行拓展,比如api借口啊,ssh执行程序啊 ...

  7. Java中常量的概念

    常量:在程序执行过程中,其值不发生改变的量.分类:A:字面值常量B:自定义常量字面值常量A:字符串常量(用“”括起来的内容).举例:"hello"B:整数常量 (所有的整数)举例: ...

  8. 用long类型让我出了次生产事故,写代码还是要小心点

    昨天发现线上试跑期的一个程序挂了,平时都跑的好好的,查了下日志是因为昨天运营跑了一家美妆top级淘品牌店,会员量近千万,一下子就把128G的内存给爆了,当时并行跑了二个任务,没辙先速写一段代码限流,后 ...

  9. 如何在 Windows Event Log 中查找系统重启的信息

    事件ID:12 事件ID 13: 事件ID 41: 事件ID 6008: 事件ID 1074:事件ID 1074: ========================================== ...

  10. OSG加载倾斜摄影数据

    目录 1. 概述 2. 实例 2.1. 代码 2.2. 解析 3. 结果 1. 概述 ContextCapture(Smart3D)生成的倾斜摄影模型数据一般都形如如下组织结构: 在Data目录下包含 ...