[洛谷P3806] [模板] 点分治1
这个点分治都不用减掉子树里的了,直接搞就行了。
注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>。
因为这个WA了半天......
如果memset清空ex数组显然是会T的,所以开一个bef用来记录需要清空哪个地方。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int n,m;
int hd[],to[],nx[],len[],ec;
int qu[],ans[]; void edge(int af,int at,int el)
{
to[++ec]=at;
len[ec]=el;
nx[ec]=hd[af];
hd[af]=ec;
} int rt,tot;
int sz[],mx[];
int del[]; void weigh(int p,int fa)
{
sz[p]=;mx[p]=;
for(int i=hd[p];i;i=nx[i])
{
int t=to[i];
if(t==fa||del[t])continue;
weigh(t,p);
sz[p]+=sz[t];
mx[p]=max(mx[p],sz[t]);
}
mx[p]=max(mx[p],tot-sz[p]);
if(mx[p]<mx[rt])rt=p;
} int dis[];
int buf[],tp,ex[],bef[],btp; void dfs(int p,int fa)
{
buf[++tp]=dis[p];
for(int i=hd[p];i;i=nx[i])
{
int t=to[i];
if(fa==t||del[t])continue;
dis[t]=dis[p]+len[i];
dfs(t,p);
}
} void count(int p)
{
btp=;
for(int i=hd[p];i;i=nx[i])
{
int t=to[i];
if(del[t])continue;
tp=;dis[t]=len[i];
dfs(t,p);
for(int j=;j<=tp;j++)
for(int k=;k<=m;k++)
if(qu[k]>=buf[j])
ans[k]|=ex[qu[k]-buf[j]];
for(int j=;j<=tp;j++)
bef[++btp]=buf[j],ex[buf[j]]=;
}
for(int i=;i<=btp;i++)ex[bef[i]]=;
} void conquer(int p)
{
del[p]=ex[]=;
count(p);
for(int i=hd[p];i;i=nx[i])
{
int t=to[i];
if(del[t])continue;
rt=;tot=sz[t];
weigh(t,);
conquer(rt);
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
int ff,tt,vv;
scanf("%d%d%d",&ff,&tt,&vv);
edge(ff,tt,vv);
edge(tt,ff,vv);
}
for(int i=;i<=m;i++)scanf("%d",&qu[i]);
mx[]=tot=n;
weigh(,);
conquer(rt);
for(int i=;i<=m;printf("\n"),i++)
printf(ans[i]?"AYE":"NAY");
return ;
}
[洛谷P3806] [模板] 点分治1的更多相关文章
- 洛谷 P3806 (点分治)
题目:https://www.luogu.org/problem/P3806 题意:一棵树,下面有q个询问,问是否有距离为k的点对 思路:牵扯到树上路径的题都是一般都是点分治,我们可以算出所有的路径长 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷 P3806 点分治模板
题目:https://www.luogu.org/problemnew/show/P3806 就是点分治~ 每次暴力枚举询问即可,复杂度是 nmlogn: 注意 tmp[0]=1 ! 代码如下: #i ...
- 洛谷P3810 陌上花开 CDQ分治(三维偏序)
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
随机推荐
- 简单模拟B1001
#include<iostream> using namespace std; int main() { int n; ; cin >> n; ) { == ) { n = ( ...
- CommandNotFoundError: No command 'conda conda'.
出现情形 当前conda版本:4.6.11 当使用git bash,无论是在vscode中,还是在桌面上打开bash,都会出现这个错误.但是在cmd中,就可以识别conda命令. 解决 该错误只在4. ...
- mui 上拉加载
最近做到移动端页面的开发,需要mui 的上拉刷新功能,最后实现后整理代码如下: 1.需要引入的js <link href="../resource/css/mui.min.css&qu ...
- JavaScript学习总结(五)
之前的几讲中我们曾经说过,JavaScript中是没有类的概念的.但是我们讲过对象,那么这个对象是怎么来的呢? 只要有函数即可创建对象 自定义对象 自定义对象的方式: 1. 使用无参的函数创建对象 & ...
- c#学习笔记06——XML
XML概述:eXtensible Markup Language,可扩展标记语言.网络应用开发的一项新技术.同HTML一样是一种标记语言,但是数据描述能力要强很多.XML具有描述所有已知未知数据的能力 ...
- 从西班牙、英国出租车与Uber之争,看共享打车未来发展趋势
一种新事物.新服务的崛起,必然会损害传统事物和服务的既得利益.比如在电灯泡发明之初,煤油灯企业就将电灯泡专利收购并"雪藏"以维护自己的利益.而电商的崛起,也让传统的线下实体店受到严 ...
- 刘永富的Office/VBA/VSTO开发资源分享
各种常用安装包下载:https://share.weiyun.com/5PCvqY4 简称 文件名称 描述信息 视频课程 虚拟光驱软件Daemon DAEMON_Tools_Lite_V10.1.0. ...
- HDU -1166 线段树
#include <algorithm> #include <iostream> #include<sstream> #include<cstring> ...
- 14 微服务电商【黑马乐优商城】:day02-springcloud(搭建Eureka注册中心)
本项目的笔记和资料的Download,请点击这一句话自行获取. day01-springboot(理论篇) :day01-springboot(实践篇) day02-springcloud(理论篇一) ...
- Xshell便捷设置实现linux复制粘贴
说明:在window系统中,Ctrl+C是复制的快捷键,Ctrl+V是粘贴的快捷键,但在xshell中,Ctrl+C 代表着中断当前指令. 解决办法如下: 1. 使用xshell中的复制粘贴快捷键复 ...