题解:luogu P1247
大概没你们说得复杂吧......
\(Part\;1\) \(Nim\)游戏
大家都对异或和感到懵逼吧(排除大佬),其实很简单,用\(SG\)函数打表计算即可解决:
抛个板子:
void get_sg(int n)
{
memset(sg,0,sizeof(sg));
for(int i=1;i<=n;i++)
{
memset(S,0,sizeof(S));
for(int j=1;f[j]<=i&&j<=m;j++)
{
S[sg[i-f[j]]]=1;
}
for(int k=0;k<=n;k++)
{
if(!S[k])
{
sg[i]=k;
break;
}
}
}
}
//S[]代表能被表示的数
//f[]代表可以转移的方法
然后发现\(sg[a_i]=a_i\)(\(a_i\)为集合中元素个数),根据博弈论的常识知识即可知道答案。
\(Part\;2\) 取火柴游戏
一眼看出是\(Nim\)游戏的板子题,于是先上:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int n,a[500005];
int sum=0;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum^=a[i];
if(sum) printf("win\n");
else printf("lose\n");
return 0;
}
这人真粗鲁
不过仔细一看,还需要输出方案,其实也是很水的,证明如下:
我们都知道异或运算是满足结合律的,即\(a\;xor \;b\; xor\;c=a\;xor(b\;xor\;c)\),
并且\(a\;xor\;a=0\),这是为啥?
考虑异或定义: 二进制位相同为\(0\),不同为\(1\),显然同一个数二进制是一模一样的,异或为\(0\)。
根据上述,可得\(s\;xor\;a\;xor\;a=s\),这也就是说,异或的逆运算是他自己。
不过和这题有啥关系呢?
优化!
我们考虑求出所有数的异或和,每次用异或踢掉一个数,判断其余数的异或和\(sum\)能否被异或为\(0\),显然两数\(x,y\)异或和为\(0\),当且仅当\(x=y\).
解题
显然如果一个人在他的必胜态操作,使另一个人进入必败态,他就成功了,即异或和为\(0\),这样像前缀和一样处理出异或和,然后每次\(O(1)\)的转移就好了。,不过注意踢掉暂时不用的,若未找到姐解,再异或回来。
其他
这题是有些贪心的思路的,显然对一堆火柴操作,只有一个可行解(由于只有相同的数才异或为\(0\)),问题是如何让堆序最小,那从第一堆开始算就好了,找到的第一组解一定是最优解鸭\(qwq\)。
粘上简单修改的代码即可,复杂度是\(O(N)\)的,常数较小吧,足以通过此题。
\(Code\):
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int n,a[500005];
int sum=0;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum^=a[i];
if(sum)
{
sum^=a[1];
for(int i=1;i<=n;i++)
{
if(sum<=a[i])//找到可行解
{
printf("%d %d\n",a[i]-sum,i);
for(int j=1;j<=n;j++)
{
if(j==i) printf("%d ",sum);
else printf("%d ",a[j]);
}
return 0;
}
sum=sum^a[i]^a[i+1];//这是精髓,注意把试验过的异或回来,把下一个数踢掉
}
}
else printf("lose\n");
return 0;
}
都看了,没个赞不好吧,大佬你觉得呢?
题解:luogu P1247的更多相关文章
- [题解] Luogu P5446 [THUPC2018]绿绿和串串
[题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...
- 题解 Luogu P2499: [SDOI2012]象棋
关于这道题, 我们可以发现移动顺序不会改变答案, 具体来说, 我们有以下引理成立: 对于一个移动过程中的任意一个移动, 若其到达的位置上有一个棋子, 则该方案要么不能将所有棋子移动到最终位置, 要么可 ...
- 题解 luogu P1144 【最短路计数】
本蒟蒻也来发一次题解第一篇请见谅 这个题有几个要点 1.无向无权图,建图的时候别忘记建来回的有向边[因此WA掉1次 2.无权嘛,那么边长建成1就好了2333333 3.最短路采用迪杰斯特拉(别忘用堆优 ...
- 题解 Luogu P1110 【[ZJOI2007]报表统计】
感谢 @cmy962085349 提供的hack数据,已经改对了. 先声明,我好像是题解里写双$fhq$ $treap$里唯一能过的...(最后两个点啊) 思路:首先看题目,$MIN_GAP_SORT ...
- 题解 Luogu P3370
讲讲这题的几种做法: 暴力匹配法 rt,暴力匹配,即把字符串存起来一位一位判相等 时间复杂度$ O(n^2·m) $ 再看看数据范围 \(n\le10^5,m\le10^3\) 当场爆炸.当然有暴力分 ...
- 题解 Luogu P3623 [APIO2008]免费道路
[APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...
- Luogu P1247 取火柴游戏
题目链接 \(Click\) \(Here\) 这个题目其实就是一个\(Nim\)游戏的简单模型.对于单个的\(Nim\)游戏(单独一堆的情况),数学归纳可证其\(SG\)函数值等于其石子个数.所以对 ...
- [题解]luogu P4116 Qtree3
终于来到了Qtree3, 其实这是Qtree系列中最简单的一道题,并不需要线段树, 只要树链剖分的一点思想就吼了. 对于树链剖分剖出来的每一根重链,在重链上维护一个Set就好了, 每一个Set里存的都 ...
- 题解 Luogu P3959 【宝藏】
来一篇不那么慢的状压??? 话说这题根本没有紫题难度吧,数据还那么水 我是不会告诉你我被hack了 一看数据规模,n≤12,果断状压. 然后起点要枚举,就设dp状态: f[i][j]=以i为起点到j状 ...
随机推荐
- Python Tkinter学习笔记
介绍 入门实例 显示一个窗口,窗口里面有一个标签,显示文字 import tkinter as tk # 一个顶层窗口的实例(Top Level),也称为根窗口 app = tk.Tk() # 设置窗 ...
- nginx 的磁盘IO优化
磁盘IO优化的几个方面 优化读取 Sendfile 零拷贝.内存盘.SSD盘 减少写入 AIO 增大error_log级别的日志 关闭access_log 压缩access_log 是否启用prox ...
- Servlet 学习(八)
Filter 1.功能 Java Servlet 2.3 中新增加的功能,主要作用是对Servlet 容器的请求和响应进行检查和修改 Filter 本身并不生成请求和响应对象,它只提供过滤作用 在Se ...
- Netsparker介绍
Netsparker是一款综合型的web应用安全漏洞扫描工具,它分为专业版和免费版,免费版的功能也比较强大.Netsparker与其他综合性的web应用安全扫描工具相比的一个特点是它能够更好的检测SQ ...
- 使用阿里云服务器配置frp实现Windows系统RDP内网穿透
1.frp服务器采用阿里云ecs的centos7.5系统,客户端是台windows10的系统,做一个RDP服务的内网穿透用. 2.首先下载frp到服务器(链接:https://github.com/f ...
- Selenium+webdriver自动化登陆QQ邮箱并发送邮件
1.关于selenium Selenium的主要功能包括:(1)测试与浏览器的兼容性:测试应用程序能否兼容工作在不同浏览器和操作系统之上.(2)测试系统功能:录制用例自动生成测试脚本,用于回归功能测 ...
- nacos作为配置中心动态刷新@RefreshScope添加后取值为null的一个问题
之前springboot项目常量类如下形式: @Component @RefreshScope//nacos配置中心时添加上 public class Constants { @Value(" ...
- spring-cloud-服务调用流程
- 解题报告+板子:luogu P3387 【模板】缩点
题目链接:P3387 [模板]缩点 缩点板子,所谓\(dp\)就是拓扑排序(毕竟可以重走边),像\(SPFA\)一样松弛就好,就是重边极其烦人,还加了排序(绝对自己想的,然鹅拓扑的思路不是). 下面上 ...
- vue的高级使用技巧
全局组件注册 一般组件应用弊端,比较笨拙繁琐低效,比如我们写了一些组件,需要引用上的时候就通过import导入,那如果是高频繁需要使用的组件,则需要在每个使用的时候都需要引入并注册 假设现在有两个组件