[Hands-on-Machine-Learning-master] 02 Housing
用到的函数
numpy.random.permutation
随机排列一个序列,返回一个排列的序列。
>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) >>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12]) >>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],
[0, 1, 2],
[3, 4, 5]])
iloc
Pandas中的 iloc 是用基于整数的下标来进行数据定位/选择
iloc 的语法是 data.iloc[<row selection>, <column selection>], iloc 在Pandas中是用来通过数字来选择数据中具体的某些行和列。你可以设想每一行都有一个对应的下标(0,1,2,...),通过 iloc 我们可以利用这些下标去选择相应的行数据。同理,对于行也一样,想象每一列也有对应的下标(0,1,2,...),通过这些下标也可以选择相应的列数据。
在iloc中一共有 2 个 “参数” -行选择器 和 -列选择器,例如:
# 使用DataFrame 和 iloc 进行单行/列的选择
# 行选择:
data.iloc[0] # 数据中的第一行
data.iloc[1] # 数据中的第二行
data.iloc[-1] # 数据中的最后一行 # 列选择:
data.iloc[:, 0] # 数据中的第一列
data.iloc[:, 1] # 数据中的第二列
data.iloc[:, -1] # 数据中的最后一列
行列混合选择
iloc 同样可以进行和列的混合选择,例如:
# 使用 iloc 进行行列混合选择
data.iloc[0:5] # 数据中的第 1-5 行
data.iloc[:, 0:2] # 选择数据中的前2列和所有行
data.iloc[[0, 3, 6, 24], [0, 5, 6]] # 选择第 1,4,7,25行 和 第 1,6,7 列
data.iloc[0:5, 5:8] # 选择第1-6行 和 6-9列
使用 iloc 注意以下两点:
如果使用iloc只选择了单独的一行会返回 Series 类型,而如果选择了多行数据则会返回 DataFrame 类型,如果你只选择了一行,但如果想要返回 DataFrame 类型可以传入一个单值list.
当你使用 [1:5] 这种语法对数据进行切片的时候,要注意只选择了 1,2,3,4 这 4 个下标,而 5 并没有被包括进去,即使用[x:y]选择了下标从 x 到 y-1 的数据
实际工作中,其实很少用到 iloc ,除非你想选择第一行( data.iloc[0] ) 或者 最后一行( data.iloc[-1] )
.
[Hands-on-Machine-Learning-master] 02 Housing的更多相关文章
- 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)
机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...
- Google's Machine Learning Crash Course #02# Descending into ML
INDEX How do we know if we have a good line Linear Regression Training and Loss How do we know if we ...
- ML Lecture 0-2: Why we need to learn machine learning?
在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need t ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- 聊天机器人(chatbot)终极指南:自然语言处理(NLP)和深度机器学习(Deep Machine Learning)
在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料. 时不时地我会发现一个出色的资源,因此 ...
- 学习笔记之机器学习(Machine Learning)
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分 ...
- 壁虎书2 End-to-End Machine Learning Project
the main steps: 1. look at the big picture 2. get the data 3. discover and visualize the data to gai ...
- 人工智能(Machine Learning)—— 机器学习
https://blog.csdn.net/luyao_cxy/article/details/82383091 转载:https://blog.csdn.net/qq_27297393/articl ...
- [C5] Andrew Ng - Structuring Machine Learning Projects
About this Course You will learn how to build a successful machine learning project. If you aspire t ...
随机推荐
- Leetcode力扣45题 跳跃游戏 II
原题目: 跳跃游戏 II 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: ...
- (CSS):last-child与:last-of-type区别
<!DOCTYPE html><html><head> <meta charset="utf-8"> <title>la ...
- 数据挖掘入门系列教程(八点五)之SVM介绍以及从零开始推导公式
目录 SVM介绍 线性分类 间隔 最大间隔分类器 拉格朗日乘子法(Lagrange multipliers) 拉格朗日乘子法推导 KKT条件(Karush-Kuhn-Tucker Conditions ...
- SignalR新手系列教程详解总结(转)
SignalR新手系列教程详解总结 GlobalHost.ConnectionManager.GetHubContext<TodoListHub>() .Clients.Clients(l ...
- http之抽丝剥茧,深度剖析http的那些事儿
最近,小编一心扎跟学技术,毫不顾及头发的掉落速度,都快成地中海了,不过也无大碍,谁让咱是一个爱钻技术的男人呢.最近两周老是看到http,那么这个http,有哪些猫腻呢,很多同学都有这种理解,就是对于h ...
- Linux服务器 上传/下载 文档/目录
1.从服务器上下载文件 scp username@servername:/path/filename /var/www/local_dir(本地目录) 例如scp root@192.168.0.101 ...
- Java并发之显式锁和隐式锁的区别
Java并发之显式锁和隐式锁的区别 在面试的过程中有可能会问到:在Java并发编程中,锁有两种实现:使用隐式锁和使用显示锁分别是什么?两者的区别是什么?所谓的显式锁和隐式锁的区别也就是说说Synchr ...
- ln -s 软链接命令
所有对软链接link_name的操作都是对目录或文件dir_file的操作 ln -s [dir_file] [link_name]
- tf.nn.relu 激活函数
tf.nn.relu(features, name = None) 计算校正线性:max(features, 0) 参数: features:一个Tensor.必须是下列类型之一:float32,fl ...
- 搭建WEB、NFS共享、sersync实时同步以及全网定时备份服务流程
本次实验的主要目的: 1.搭建web服务,使用nfs服务共享的/data目录挂载到web站点目录上. 2.nfs服务器与backup服务器使用sersync实时同步/data目录中的文件. 3.bac ...