>传送门<

题意


$n$个宽度为$w_{i}$,高为$h_{i}$ 的 木块,要求分成$k$组,对于每组内的所有木块,高度都变为组内最低木块的高度,宽度保持不变,求变化的最小面积。

分析


由于$dp$状态定义不同写法也不同,这里给出一种解法

高度比较高的木块为迁就高度比较低的(为了$dp$方程及其优化),所以先把木板按照高度从高到低排序

如果设$d[i][k]$ 为前$ i $个分成 $k $份可以保留的最大面积,那么答案就是 $tot−d[n][k]$($tot$ 为初始总面积)

考虑如何转移

               $d[i][k]=max(d[j][k-1]+(pre[i]-pre[j])\cdot h[i])$

其中$pre$为宽度前缀和,即$pre[i]=\sum_{1}^{i}w[i] $。

暴力转移复杂度较高($O(n^{2})$),考虑如何优化。(这不就是个斜率优化嘛)

我们设$j_{1}<j_{2}<i$且在计算$dp[i][k]$的时候,决策$j_{2}$更优,也就是说

                $d[j_{1}][k−1]+(pre[i]−pre[j_{1}])\cdot h[i]<d[j_{2}][k−1]+(pre[i]−pre[j_{2}])\cdot h[i] $

这时$j_{1}$可以从决策集中被删去,因为后者的$j_{2}$要比$j_{1}$更优。

上式可以化简为

              $\frac{d[j_{2}][k-1]-d[j_{1}][k-1]}{pre[j_{2}]-pre[j_{1}]}$>$h[i]$

这时我们维护一个单调递减的决策集就可以了

Code

#include <bits/stdc++.h>
#define empty (head>=tail)
#define ll long long
using namespace std;
const int maxn = 5e3+, maxk = 2e3+;
int n, k, head, tail, j;
ll pre[maxn], d[maxn][maxk], q[maxn];
struct node{int w ,h;}a[maxn];
bool cmp(node a, node b){return a.h > b.h;}
long double slope(int x, int y, int p) {
return (long double)(d[y][p-]-d[x][p-])/(pre[y]-pre[x]);
}
int main()
{
scanf("%d%d", &n, &k);
ll sum = ;
for (int i = ; i<= n; i++) {
scanf("%d%d", &a[i].w, &a[i].h);
sum += a[i].h * a[i].w;
}
sort(a+, a++n, cmp);
for (int i = ; i <= n; i++) pre[i] = pre[i-] + a[i].w;
for(int p = ; p <= k; p++) {
head = tail = ;
for (int i = ; i <= n; i++) {
while(!empty&&slope(q[head],q[head+],p)>a[i].h) head++;
j = q[head]; d[i][p] = d[j][p-]+a[i].h*(pre[i]-pre[j]);
while(!empty&&slope(q[tail],q[tail-],p)<slope(q[tail],i,p)) tail--;
q[++tail] = i;
}
}
printf("%lld\n", sum-d[n][k]);
return ;
}

思考


开始对木板高度排序那里,能想到的应该就直接想到了,没想到的应该是写转移方程的时候发现,排序后比较好写出转移方程,并且需要对其进行优化就会去关心排序的方向。原博主的博客一直都写的挺好的,但是我觉得这种东西还是要多看看各种博客,这会给你广阔的思路和一些对比。他有关斜率优化$dp$的题目里,写的都是由于$A[i]$是单调递增/递减,所以维护的是一个递增/递减的决策集,但是我在相关题目写的挺好的博客里看到的是,博主都是给出说明为什么维护一个凸包/凹包,而并没有说是因为上面的那种原因。另外这题,由于看过维护凸包的,类比的思想维护凹包原理上都是差不多的,不过之后还是要去写凹包相关题目(立flag)。遇到有困惑的地方,重新翻回去看大米饼的博客还有其他人的博客,感觉慢慢会清晰一点,$go\ on$~

2019牛客暑期多校训练营(第十场)J - Wood Processing (斜率优化DP)的更多相关文章

  1. 2019牛客暑期多校训练营(第二场)E 线段树维护dp转移矩阵

    题意 给一个\(n\times m\)的01矩阵,1代表有墙,否则没有,每一步可以从\(b[i][j]\)走到\(b[i+1][j]\),\(b[i][j-1]\),\(b[i][j+1]\),有两种 ...

  2. 2019牛客暑期多校训练营(第二场) - H - Second Large Rectangle - dp

    https://ac.nowcoder.com/acm/contest/882/H 正确的办法:dp1[i][j]表示以i,j为底的矩形的高.得到dp1之后,dp2[i][j]表示以dp1[i][j] ...

  3. 2019牛客暑期多校训练营(第二场)E.MAZE(线段树+dp)

    题意:给你一个n*m的矩阵 你只能向左向右相下走 有两种操作 q次询问 一种是把一个单位翻转(即可走变为不可走 不可走变为可走) 另一种是询问从(1,x) 走到 (n,y)有多少种方案 思路:题目n为 ...

  4. 2019牛客暑期多校训练营(第六场)J Upgrading Technology

    传送门 题意: 就是给你n个技能,每个技能最高升到m级,每升一级就是耗费Cij钱,这个Cij可能是负的,如果所有技能都升到或者说超过j等级,就会获得Dj钱,这个Dj也有可能是负值,让你求你最多得到多少 ...

  5. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  6. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  7. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  8. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  9. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  10. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

随机推荐

  1. 前端html+css+JavaScript 需要掌握的单词

    前端html+css+JavaScript 需要掌握的单词   broswer 浏览器(客户端) html 超文本标记语言 css 层叠样式表 javascript 语言名字(类似python/php ...

  2. html+css-->background-img(背景图的设置)

    背景图:(相关验证代码请查看代码,在验证时需将当前不需要验证的代码注释掉)    1.inherit:从父元素继承属性设置    2.background-repeat:平铺(在图片大小小于元素尺寸时 ...

  3. redis的下载与安装(linux版)

    redis的下载与安装(linux版) 1.下载路径 https://redis.io/download 2.上传到linux并且解压 3.进入解压之后的redis,并且make && ...

  4. 【ML入门】李宏毅机器学习笔记01-Learning Map

    版权声明:小博主水平有限,希望大家多多指导.本文仅代表作者本人观点,转载请联系知乎原作者——BG大龍. 目录 1 什么是机器学习? 2 机器学习的3个步骤 3 李宏毅老师的机器学习课程 4 按“模型的 ...

  5. Python识别璇玑图中诗的数量

    一.璇玑图简介 璇玑图的读法有很多,这里我使用七七棋盘格的读法,在璇玑图中分离出一个七七棋盘格,如下表 吏 官 同 流 污 合 玩 痞 悍 蒙 骗 造 假 蛋 鸡 宴 请 客 友 朋 远 戚 偏 正 ...

  6. LeetCode 解题目录

    0001. 两数之和(Java) 0003. 无重复字符的最长子串(Java) 0172. 阶乘后的零 (Java) 0287. 寻找重复数(Java)

  7. python多线程详解

    目录 python多线程详解 一.线程介绍 什么是线程 为什么要使用多线程 二.线程实现 threading模块 自定义线程 守护线程 主线程等待子线程结束 多线程共享全局变量 互斥锁 递归锁 信号量 ...

  8. oracle的本地远程连接和配置

    Oracle数据库的远程连接可以通过多种方式来实现,本文我们主要介绍四种远程连接的方法和注意事项,并通过示例来说明,接下来我们就开始介绍. 第一种情况: 若oracle服务器装在本机上,那就不多说了, ...

  9. Centos7 搭建owncloud云存储

    Centos7 搭建owncloud云存储 首先准备必要的软件和资料. 这里我已经整理好了: 百度云共享 不过最好还是自己去官网上下.这里只不过是提供了快捷方式. owncloud官网:https:/ ...

  10. vue通信、传值的多种方式(详细)

    转载自https://blog.csdn.net/qq_35430000/article/details/79291287