并发编程-concurrent指南-ConcurrentMap
ConcurrentMap 是个接口,你想要使用它的话就得使用它的实现类之一。
ConcurrentMap,它是一个接口,是一个能够支持并发访问的java.util.map集合;
在原有java.util.map接口基础上又新提供了4种方法,进一步扩展了原有Map的功能:
public interface ConcurrentMap<K, V> extends Map<K, V> {
//插入元素
V putIfAbsent(K key, V value);
//移除元素
boolean remove(Object key, Object value);
//替换元素
boolean replace(K key, V oldValue, V newValue);
//替换元素
V replace(K key, V value);
}
putIfAbsent:与原有put方法不同的是,putIfAbsent方法中如果插入的key相同,则不替换原有的value值;
remove:与原有remove方法不同的是,新remove方法中增加了对value的判断,如果要删除的key--value不能与Map中原有的key--value对应上,则不会删除该元素;
replace(K,V,V):增加了对value值的判断,如果key--oldValue能与Map中原有的key--value对应上,才进行替换操作;
replace(K,V):与上面的replace不同的是,此replace不会对Map中原有的key--value进行比较,如果key存在则直接替换;
其实,对于ConcurrentMap来说,我们更关注Map本身的操作,在并发情况下是如何实现数据安全的。在java.util.concurrent包中,ConcurrentMap的实现类主要以ConcurrentHashMap为主。接下来,我们具体来看下。
1.2 ConcurrentHashMap
ConcurrentHashMap是一个线程安全,并且是一个高效的HashMap。
但是,如果从线程安全的角度来说,HashTable已经是一个线程安全的HashMap,那推出ConcurrentHashMap的意义又是什么呢?
说起ConcurrentHashMap,就不得不先提及下HashMap在线程不安全的表现,以及HashTable的效率!
HashMap
关于HashMap的讲解,可以参考 HashMap 的底层原理 和 Java集合,HashMap底层实现和原理(1.7数组+链表与1.8+的数组+链表+红黑树)以及红黑树
在此节中,我们主要来说下,在多线程情况下HashMap的表现?
HashMap中添加元素的源码:(基于JDK1.7.0_45)
public V put(K key, V value) {
。。。忽略
addEntry(hash, key, value, i);
return null;
}
void addEntry(int hash, K key, V value, int bucketIndex) {
。。。忽略
createEntry(hash, key, value, bucketIndex);
}
//向链表头部插入元素:在数组的某一个角标下形成链表结构;
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
在多线程情况下,同时A、B两个线程走到createEntry()方法中,并且这两个线程中插入的元素hash值相同,bucketIndex值也相同,那么无论A线程先执行,还是B线程先被执行,最终都会2个元素先后向链表的头部插入,导致互相覆盖,致使其中1个线程中的数据丢失。这样就造成了HashMap的线程不安全,数据的不一致;
更要命的是,HashMap在多线程情况下还会出现死循环的可能,造成CPU占用率升高,导致系统卡死。
举个简单的例子:
public class ConcurrentHashMapTest {
public static void main(String[] agrs) throws InterruptedException {
final HashMap<String,String> map = new HashMap<String,String>();
Thread t = new Thread(new Runnable(){
public void run(){
for(int x=0;x<10000;x++){
Thread tt = new Thread(new Runnable(){
public void run(){
map.put(UUID.randomUUID().toString(),"");
}
});
tt.start();
System.out.println(tt.getName());
}
}
});
t.start();
t.join();
}
}
在上面的例子中,我们利用for循环,启动了10000个线程,每个线程都向共享变量中添加一个元素。
测试结果:通过使用JDK自带的jconsole工具,可以看到HashMap内部形成了死循环,并且主要集中在两处代码上。
HashMap--put()494行:(基于JDK1.7.0_45)
public V put(K key, V value) {
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {------**for循环494行**
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
HashMap--transfer()601行:(基于JDK1.7.0_45)
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}-----**while循环601行**
}
}
通过查看代码,可以看出,死循环的产生:主要因为在遍历数组角标下的链表时,没有了为null的元素,单向链表变成了循环链表,头尾相连了。
以上两点,就是HashMap在多线程情况下的表现。
- HashTable
说完了HashMap的线程不安全,接下来说下HashTable的效率!!
HashTable与HashMap的结构一致,都是哈希表实现。
与HashMap不同的是,在HashTable中,所有的方法都加上了synchronized锁,用锁来实现线程的安全性。由于synchronized锁加在了HashTable的每一个方法上,所以这个锁就是HashTable本身--this。那么,可想而知HashTable的效率是如何,安全是保证了,但是效率却损失了。
无论执行哪个方法,整个哈希表都会被锁住,只有其中一个线程执行完毕,释放所,下一个线程才会执行。无论你是调用get方法,还是put方法皆是如此;
说完了HashMap和HashTable,下面我们就重点介绍下ConcurrentHashMap,看看ConcurrentHashMap是如何来解决上述的两个问题的!
1.3 ConcurrentHashMap结构
在说到ConcurrentHashMap源码之前,我们首先来了解下ConcurrentHashMap的整体结构,这样有利于我们快速理解源码。
不知道,大家还是否记得HashMap的整体结构呢?如果忘记的话,我们就在此进行回顾下!

HashMap底层使用数组和链表,实现哈希表结构。插入的元素通过散列的形式分布到数组的各个角标下;当有重复的散列值时,便将新增的元素插入在链表头部,使其形成链表结构,依次向后排列。
下面是,ConcurrentHashMap的结构:

与HashMap不同的是,ConcurrentHashMap中多了一层数组结构,由Segment和HashEntry两个数组组成。其中Segment起到了加锁同步的作用,而HashEntry则起到了存储K.V键值对的作用。
在ConcurrentHashMap中,每一个ConcurrentHashMap都包含了一个Segment数组,在Segment数组中每一个Segment对象则又包含了一个HashEntry数组,而在HashEntry数组中,每一个HashEntry对象保存K-V数据的同时又形成了链表结构,此时与HashMap结构相同。
在多线程中,每一个Segment对象守护了一个HashEntry数组,当对ConcurrentHashMap中的元素修改时,在获取到对应的Segment数组角标后,都会对此Segment对象加锁,之后再去操作后面的HashEntry元素,这样每一个Segment对象下,都形成了一个小小的HashMap,在保证数据安全性的同时,又提高了同步的效率。只要不是操作同一个Segment对象的话,就不会出现线程等待的问题!
本文转自:https://www.jianshu.com/p/8f7b2cd34c47
并发编程-concurrent指南-ConcurrentMap的更多相关文章
- 并发编程-concurrent指南-原子操作类-AtomicInteger
在java并发编程中,会出现++,--等操作,但是这些不是原子性操作,这在线程安全上面就会出现相应的问题.因此java提供了相应类的原子性操作类. 1.AtomicInteger
- 并发编程-concurrent指南-线程池ExecutorService的实例
1.new Thread的弊端 执行一个异步任务你还只是如下new Thread吗? new Thread(new Runnable() { @Override public void run() { ...
- 并发编程-concurrent指南-计数器CountDownLatch
java.util.concurrent.CountDownLatch 是一个并发构造,它允许一个或多个线程等待一系列指定操作的完成. CountDownLatch 以一个给定的数量初始化.count ...
- 并发编程-concurrent指南-阻塞双端队列-链阻塞双端队列LinkedBlockingDeque
LinkedBlockingDeque是双向链表实现的阻塞队列.该阻塞队列同时支持FIFO和FILO两种操作方式,即可以从队列的头和尾同时操作(插入/删除): 在不能够插入元素时,它将阻塞住试图插入元 ...
- 并发编程-concurrent指南-阻塞队列-链表阻塞队列LinkedBlockingQueue
LinkedBlockingQueue是一个基于链表的阻塞队列. 由于LinkedBlockingQueue实现是线程安全的,实现了先进先出等特性,是作为生产者消费者的首选. LinkedBlocki ...
- 并发编程-concurrent指南-原子操作类-AtomicLong
可以用原子方式更新的 long 值.有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范.AtomicLong 可用在应用程序中(如以原子方式增加的序列号), ...
- 并发编程-concurrent指南-原子操作类-AtomicBoolean
类AtomicBoolean
- 并发编程-concurrent指南-ReadWriteLock-ReentrantReadWriteLock(可重入读写锁)
几个线程都申请读锁,都能获取: import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantRea ...
- 并发编程-concurrent指南-Lock-可重入锁(ReentrantLock)
可重入和不可重入的概念是这样的:当一个线程获得了当前实例的锁,并进入方法A,这个线程在没有释放这把锁的时候,能否再次进入方法A呢? 可重入锁:可以再次进入方法A,就是说在释放锁前此线程可以再次进入方法 ...
随机推荐
- 从PRISM开始学WPF(番外)共享上下文 RegionContext?
原文:从PRISM开始学WPF(番外)共享上下文 RegionContext? RegionContext共享上下文 There are a lot of scenarios where you mi ...
- RestSharp 封状实例
1 public class Rest<T> { private static Logger logger = LogManager.GetCurrentClassLogger(); pr ...
- 手把手教你学会 基于JWT的单点登录
最近我们组要给负责的一个管理系统 A 集成另外一个系统 B,为了让用户使用更加便捷,避免多个系统重复登录,希望能够达到这样的效果--用户只需登录一次就能够在这两个系统中进行操作.很明显这就是单点登 ...
- Dynamic proxy (good-原创)
import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.lang.reflec ...
- Centos重启关机命令
Linux centos重启命令: 1.reboot 普通重启 2.shutdown -r now 立刻重启(root用户使用) 3.shutdown -r 10 过10分钟自动重启(root用户 ...
- 把#define宏转换成指定格式
之前在弄一个东西的,有一大堆的宏,需要把它转换成其它的形式.遇到这种大批量的东西,我特别没有耐心去一个一个的弄,于是写了一段代码. 估计大家平常比较难用得上,不过可以平常相似的情况用来参考. Sort ...
- PRML Chapter4
超平面(hyperplane) 超平面:超平面是n维欧氏空间中余维度等于一的线性子空间,也就是说必须是(n-1)维度.这是平面中的直线.三维空间中平面的推广(n大于3才被称为"超" ...
- QT中Dialog的使用(使用QStackedWidget维护页面切换)
先看看效果图: pages.h #ifndef PAGES_H #define PAGES_H #include <QWidget> class ConfigurationPage : p ...
- delphi中move函数的正确理解(const和var一样,都是传地址,所以Move是传地址,而恰恰不是传值)太精彩了 good
我们能看到以下代码var pSource,pDest:PChar; len: integer;.......................//一些代码Move(pSource,pDest,l ...
- ubuntu QT开发环境(三种方法安装Qt4.8,其中apt-get方法安装QT库最简单)good
方法一 QT4.8.0库+QT Creator 2.4.1 特别声明:此方法极其耗时间,看电脑性能了.配置configure可减少编译时间 1.下载Qt .进入网址http://qt.nokia.co ...