Today, more and more people begin to raise a QQpet. You can get a lot of pleasure from it, although it does not have a real life and it calls for huge patience to take care of it. There is a place called QQpet exploratory park in the world. Every week, you can get a chance to have a joy there for free. The whole park contains 61 grids in a line, numbered from 0 to 60. Ten of them are important grids which will touch off ( 引发 ) an incident when the pet stands on. They are 5, 12, 22, 29, 33, 38, 42, 46, 50 and 55. Your pet is standing on the gird of number 0 in the beginning. You can toss the die ( 掷骰子 ) 10 times. Each time, the pet goes ahead n steps which n is the number from the die ( n ∈{ 1, 2, …, 6 } ). If your RP is great enough( calls RPG for short ), you will get many surprises in the important grids, such as some yuanbao( the money in QQpet world ), an improvement of your pet's ability, and the most attractive gift-package. Now, your task is to calculate the probability(概率) of touching each important grid.

InputThe first line of the input contains an integer t–
determining the number of datasets. Then t lines follows. Each line
contains 6 numbers pi, i ∈{ 1, 2, …, 6 }, indicating the probability of
getting 1 to 6 after you toss the die every time . p1+ p2+ … + p6 = 1.

OutputFor each test case, output the probability of touching each
important grid. accurate up to 1 decimal places. There is a blank line
between test cases. See the Sample Output to get the exactly output
format.

Sample Input

2
0.000 1.000 0.000 0.000 0.000 0.000
0.500 0.000 0.000 0.000 0.000 0.500

Sample Output

5: 0.0%
12: 100.0%
22: 0.0%
29: 0.0%
33: 0.0%
38: 0.0%
42: 0.0%
46: 0.0%
50: 0.0%
55: 0.0% 5: 3.1%
12: 30.5%
22: 27.3%
29: 24.6%
33: 21.9%
38: 10.9%
42: 0.8%
46: 0.0%
50: 4.4%
55: 1.0% OJ-ID:
HDU-1493 author:
Caution_X date of submission:
20190930 tags:
概率DP description modelling:
投掷10次骰子,掷出的点数概率已给出,问掷完后落在5, 12, 22, 29, 33, 38, 42, 46, 50 55点上的概率。 major steps to solve it:
1.dp[i][j]:=第j次投在第i格上的概率,p[]:=各个点的概率
2.dp[i][1]=p[i];
3.dp[i+k][j+1]+=dp[i][j]*p[k]; AC CODE:
#include<bits/stdc++.h>
using namespace std;
double p[];
double dp[][];
int a[]={,,,,,,,,,};
int main()
{
//freopen("input.txt","r",stdin);
int t;
scanf("%d",&t);
while(t--) { for(int i=; i<=; i++) {
scanf("%lf",&p[i]);
} memset(dp,,sizeof(dp));
for(int i=;i<=;i++){
dp[i][]=p[i];
} for(int j=; j<=; j++) {
for(int i=; i<=; i++) {
for(int k=; k<=; k++) {
dp[i+k][j+]+=dp[i][j]*p[k];
}
}
} for(int i=; i<; i++) {
double ans=;
for(int j=;j<=;j++){
ans+=dp[a[i]][j];
}
printf("%d: %.1f%%\n",a[i],ans*);
}
if(t) printf("\n"); }
return ;
}

A - QQpet exploratory park HDU - 1493 DP的更多相关文章

  1. Q - QQpet exploratory park HDU - 1493 (概率DP)

    题目大意: 一共有61个位置,标记为0~60.其中有10个重要位置,分别为:5, 12, 22, 29, 33, 38, 42, 46, 50 and 55. 有一个筛子,一共6个面,标有1~6.摇到 ...

  2. QQpet exploratory park(DP)

    QQpet exploratory park Today, more and more people begin to raise a QQpet. You can get a lot of plea ...

  3. 【HDOJ】1493 QQpet exploratory park

    超水的动态规划.最后要对概率求Sigma. #include <cstdio> #include <cstring> #include <cstdlib> #def ...

  4. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  5. HDU 5928 DP 凸包graham

    给出点集,和不大于L长的绳子,问能包裹住的最多点数. 考虑每个点都作为左下角的起点跑一遍极角序求凸包,求的过程中用DP记录当前以j为当前末端为结束的的最小长度,其中一维作为背包的是凸包内侧点的数量.也 ...

  6. HDU 1069 dp最长递增子序列

    B - Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  7. HDU 1160 DP最长子序列

    G - FatMouse's Speed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  8. hdu 4826(dp + 记忆化搜索)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4826 思路:dp[x][y][d]表示从方向到达点(x,y)所能得到的最大值,然后就是记忆化了. #i ...

  9. HDU 2861 (DP+打表)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2861 题目大意:n个位置,m个人,分成k段,统计分法.S(n)=∑nk=0CknFibonacci(k ...

随机推荐

  1. Vue修改单个组件的背景颜色

    组件默认背景颜色为白色,但工作需要改成黑色,于是研究了一番. 很简单,只需在组件中使用两个钩子函数beforeCreate (),beforeDestroy () 代码如下: beforeCreate ...

  2. 常见跨域解决方案以及Ocelot 跨域配置

    常见跨域解决方案以及Ocelot 跨域配置 Intro 我们在使用前后端分离的模式进行开发的时候,如果前端项目和api项目不是一个域名下往往会有跨域问题.今天来介绍一下我们在Ocelot网关配置的跨域 ...

  3. CNN反向传播更新权值

    背景 反向传播(Backpropagation)是训练神经网络最通用的方法之一,网上有许多文章尝试解释反向传播是如何工作的,但是很少有包括真实数字的例子,这篇博文尝试通过离散的数据解释它是怎样工作的. ...

  4. wpf button style IsMouseOver

    <Style x:Key="workButtonStyle" TargetType="{x:Type Button}"> <Style.Tri ...

  5. .NET MVC5简介(三)Result

    Ajax请求数据响应格式,一个醒目组必须是同意的,前端才知道怎么应付,还有很多其他情况,比如异常了,有ExceptionFilter,按照固定格式返回,比如没有权限,Authorization,按照固 ...

  6. 深入理解AbstractQueuedSynchronizer(AQS)

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...

  7. Vue中v-on的指令以及一些其他指令

    1.v-on的基本使用 <div id="app"> <!-- 使用事件绑定的简写形式 --> <input type="button&qu ...

  8. JAVA 设置模块间的依赖关系

    项目目录概况 Demo01项目 Test01.java package com.sam.demo01; public class Test01 { public void ShowTest01() { ...

  9. css 关于浮动float的使用以及清除浮动

    float:none | left | right 默认值:none 适用于:所有元素 none:设置对象不浮动left:设置对象浮在左边right:设置对象浮在右边 当该属性不等于none引起对象浮 ...

  10. jquery-uploadfile的使用(多文件异步上传)

    需求 在页面端可以在页面不刷新情况下上传多个有大小限制的word文件,并返回文件保存的路径,同时可以删除误上传的文件. 准备 下载该插件 该插件依赖jquery1.9.1版本(其它不清楚)*在jsp页 ...