Today, more and more people begin to raise a QQpet. You can get a lot of pleasure from it, although it does not have a real life and it calls for huge patience to take care of it. There is a place called QQpet exploratory park in the world. Every week, you can get a chance to have a joy there for free. The whole park contains 61 grids in a line, numbered from 0 to 60. Ten of them are important grids which will touch off ( 引发 ) an incident when the pet stands on. They are 5, 12, 22, 29, 33, 38, 42, 46, 50 and 55. Your pet is standing on the gird of number 0 in the beginning. You can toss the die ( 掷骰子 ) 10 times. Each time, the pet goes ahead n steps which n is the number from the die ( n ∈{ 1, 2, …, 6 } ). If your RP is great enough( calls RPG for short ), you will get many surprises in the important grids, such as some yuanbao( the money in QQpet world ), an improvement of your pet's ability, and the most attractive gift-package. Now, your task is to calculate the probability(概率) of touching each important grid.

InputThe first line of the input contains an integer t–
determining the number of datasets. Then t lines follows. Each line
contains 6 numbers pi, i ∈{ 1, 2, …, 6 }, indicating the probability of
getting 1 to 6 after you toss the die every time . p1+ p2+ … + p6 = 1.

OutputFor each test case, output the probability of touching each
important grid. accurate up to 1 decimal places. There is a blank line
between test cases. See the Sample Output to get the exactly output
format.

Sample Input

2
0.000 1.000 0.000 0.000 0.000 0.000
0.500 0.000 0.000 0.000 0.000 0.500

Sample Output

5: 0.0%
12: 100.0%
22: 0.0%
29: 0.0%
33: 0.0%
38: 0.0%
42: 0.0%
46: 0.0%
50: 0.0%
55: 0.0% 5: 3.1%
12: 30.5%
22: 27.3%
29: 24.6%
33: 21.9%
38: 10.9%
42: 0.8%
46: 0.0%
50: 4.4%
55: 1.0% OJ-ID:
HDU-1493 author:
Caution_X date of submission:
20190930 tags:
概率DP description modelling:
投掷10次骰子,掷出的点数概率已给出,问掷完后落在5, 12, 22, 29, 33, 38, 42, 46, 50 55点上的概率。 major steps to solve it:
1.dp[i][j]:=第j次投在第i格上的概率,p[]:=各个点的概率
2.dp[i][1]=p[i];
3.dp[i+k][j+1]+=dp[i][j]*p[k]; AC CODE:
#include<bits/stdc++.h>
using namespace std;
double p[];
double dp[][];
int a[]={,,,,,,,,,};
int main()
{
//freopen("input.txt","r",stdin);
int t;
scanf("%d",&t);
while(t--) { for(int i=; i<=; i++) {
scanf("%lf",&p[i]);
} memset(dp,,sizeof(dp));
for(int i=;i<=;i++){
dp[i][]=p[i];
} for(int j=; j<=; j++) {
for(int i=; i<=; i++) {
for(int k=; k<=; k++) {
dp[i+k][j+]+=dp[i][j]*p[k];
}
}
} for(int i=; i<; i++) {
double ans=;
for(int j=;j<=;j++){
ans+=dp[a[i]][j];
}
printf("%d: %.1f%%\n",a[i],ans*);
}
if(t) printf("\n"); }
return ;
}

A - QQpet exploratory park HDU - 1493 DP的更多相关文章

  1. Q - QQpet exploratory park HDU - 1493 (概率DP)

    题目大意: 一共有61个位置,标记为0~60.其中有10个重要位置,分别为:5, 12, 22, 29, 33, 38, 42, 46, 50 and 55. 有一个筛子,一共6个面,标有1~6.摇到 ...

  2. QQpet exploratory park(DP)

    QQpet exploratory park Today, more and more people begin to raise a QQpet. You can get a lot of plea ...

  3. 【HDOJ】1493 QQpet exploratory park

    超水的动态规划.最后要对概率求Sigma. #include <cstdio> #include <cstring> #include <cstdlib> #def ...

  4. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  5. HDU 5928 DP 凸包graham

    给出点集,和不大于L长的绳子,问能包裹住的最多点数. 考虑每个点都作为左下角的起点跑一遍极角序求凸包,求的过程中用DP记录当前以j为当前末端为结束的的最小长度,其中一维作为背包的是凸包内侧点的数量.也 ...

  6. HDU 1069 dp最长递增子序列

    B - Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  7. HDU 1160 DP最长子序列

    G - FatMouse's Speed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  8. hdu 4826(dp + 记忆化搜索)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4826 思路:dp[x][y][d]表示从方向到达点(x,y)所能得到的最大值,然后就是记忆化了. #i ...

  9. HDU 2861 (DP+打表)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2861 题目大意:n个位置,m个人,分成k段,统计分法.S(n)=∑nk=0CknFibonacci(k ...

随机推荐

  1. 搭建Jupyter学习环境

    `python notebook`是一个基于浏览器的python数据分析工具,使用起来非常方便,具有极强的交互方式和富文本的展示效果.jupyter是它的升级版,它的安装也非常方便,一般`Anacon ...

  2. redis安装等其他操作

    重启:./redis-server或者  ./redis-server redis.conf ps -ef|grep redis 得到了进程号 xxxx 然后 ls -l /proc/xxxx/cwd ...

  3. Elasticsearch 6.x版本全文检索学习之Search API

    Elasticsearch 6.x版本全文检索学习之Search API. 1).Search API,实现对es中存储的数据进行查询分析,endpoind为_search,如下所示. 方式一.GET ...

  4. SpringBoot(15)—@Conditional注解

    SpringBoot(15)-@Conditional注解 作用 @Conditional是Spring4新提供的注解,它的作用是按照一定的条件进行判断,满足条件的才给容器注册Bean. 一.概述 1 ...

  5. HTTP Error 500.35 - ANCM Multiple In-Process Applications in same Process

    vs2019   win10 情况:报错 HTTP Error 500.35 - ANCM Multiple In-Process Applications in same Process 微软官方解 ...

  6. hive 标准hql建表语法格式

    一.标准hql建表语法格式1.官方标准语法:(hql不区分大小写,下面[]里的属性是可选属性) 具体参考官网界面:HIVE官网建表说明文档 CREATE [EXTERNAL] TABLE [IF NO ...

  7. CAD总记不住?设计达人给你支招,最强口诀40条玩转设计

    绘图界有这样一个准则:绘图越快,玩的越6 相反的,CAD玩的很6 ,你的绘图效率一定不会差到哪里去,虽然不能说的太绝对,但你就操作如果玩转,一定你就操作能给你的绘图带来很多效率的提升. 当然后面就你就 ...

  8. 在Dynamis CRM中打造一键保存关闭刷新案例的功能

    关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复172或者20151114可方便获取本文,同时可以在第一时间得到我发布的最新的博文信息,follow me! 我们知道在Dynamics CR ...

  9. iOS9新框架—Watch Connectivity(详情:http://ios.itcast.cn/subject/ios9/index.shtml )

    1背景. Watch Connectivity--专为用来实现Watch与配对iPhone上的文件和数据的来回传输而生. 2.iOS8与iOS9发送数据的对比. 我们知道数据交换在iOS8中就有,我们 ...

  10. 微信小程序动画之圆形进度条

    微信小程序动画之圆形进度条 上图: js: //获取应用实例 var app = getApp() var interval; var varName; var ctx = wx.createCanv ...