Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】
Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】(未完成)
标签:入门讲座题解 数论
题目描述
It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery.
Aladdin was about to enter to a magical cave, led by the evil sorcerer who disguised himself as Aladdin's uncle, found a strange magical flying carpet at the entrance. There were some strange creatures guarding the entrance of the cave. Aladdin could run, but he knew that there was a high chance of getting caught. So, he decided to use the magical flying carpet. The carpet was rectangular shaped, but not square shaped. Aladdin took the carpet and with the help of it he passed the entrance.
Now you are given the area of the carpet and the length of the minimum possible side of the carpet, your task is to find how many types of carpets are possible. For example, the area of the carpet 12, and the minimum possible side of the carpet is 2, then there can be two types of carpets and their sides are: {2, 6} and {3, 4}.
Input
Input starts with an integer T (≤ 4000), denoting the number of test cases.
Each case starts with a line containing two integers: a b (1 ≤ b ≤ a ≤ 1012) where a denotes the area of the carpet and b denotes the minimum possible side of the carpet.
Output
For each case, print the case number and the number of possible carpets.
Sample Input
2
10 2
12 2
Sample Output
Case 1: 1
Case 2: 2
题意
给定\(a, b\), \(a\)
解析
通过代码
/*
Problem
LightOJ - 1341
Status
Accepted
Time
359ms
Memory
6968kB
Length
1607
Lang
C++
Submitted
2019-11-25 21:51:33
RemoteRunId
1640797
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e6 + 50;
bool vis[MAXN];
int prime[MAXN], cnt = 0;
inline ll read() //快读,加快程序输入速度.
{
ll res = 0;
char ch;
ch = getchar();
while(!isdigit(ch))
ch = getchar();
while(isdigit(ch)){
res = (res << 3) + (res << 1) + ch - 48;
ch = getchar();
}
return res;
}
void get_prime() //欧拉筛,先找到sqrt(n)以内的质数,方便之后质因数分解.
{
vis[1] = 1;
for(int i = 2; i <= int(1e6 + 5); i ++){
if(!vis[i])
prime[++ cnt] = i;
for(int j = 1; j <= cnt && i * prime[j] <= int(1e6 + 5); j ++){
vis[i * prime[j]] = 1;
if(i % prime[j] == 0)
break;
}
}
return ;
}
int main()
{
get_prime();
int times, _case = 0;
scanf("%d", ×);
while(times --){
ll a, b, t;
ll ans = 1;
a = read(), b = read();
t = a;
if(b * b >= a){ //如果最小的因数都超过了sqrt(a),那么说明不存在符合条件的成对的因数了.
printf("Case %d: 0\n", ++_case);
continue;
}
for(int i = 1; i <= cnt && 1ll * prime[i] * prime[i] <= a; i ++){
if(a % prime[i] == 0){
int res = 0;
while(a % prime[i] == 0){
res ++;
a /= prime[i];
}
ans *= 1ll * (res + 1);
}
}
if(a > 1)
ans <<= 1;
ans >>= 1; //问有几对,两个因数算作一对.(如果是完全平方数的sqrt(a)因子,则不能算作一对.)
for(ll i = 1; i < b; i ++){
if(t % i == 0)
ans --;
}
printf("Case %d: %lld\n", ++ _case, ans);
}
return 0;
}
Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】的更多相关文章
- Aladdin and the Flying Carpet LightOJ 1341 唯一分解定理
题意:给出a,b,问有多少种长方形满足面积为a,最短边>=b? 首先简单讲一下唯一分解定理. 唯一分解定理:任何一个自然数N,都可以满足:,pi是质数. 且N的正因子个数为(1+a1)*(1+a ...
- Aladdin and the Flying Carpet LightOJ - 1341 (素数打表 + 算术基本定理)
题意: 就是求a的因数中大于b的有几对 解析: 先把素数打表 运用算术基本定理 求出a的所有因数的个数 然后减去小于b的因数的个数 代码如下: #include <iostream> #i ...
- LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...
- LightOJ1341 Aladdin and the Flying Carpet —— 唯一分解定理
题目链接:https://vjudge.net/problem/LightOJ-1341 1341 - Aladdin and the Flying Carpet PDF (English) S ...
- Aladdin and the Flying Carpet
Aladdin and the Flying Carpet https://cn.vjudge.net/contest/288520#problem/C It's said that Aladdin ...
- C - Aladdin and the Flying Carpet 有多少种长方形满足面积为a(<=10^12),且最短边>=b;长方形边长为整数,且一定不可以是正方形。
/** 题目:C - Aladdin and the Flying Carpet 链接:https://vjudge.net/contest/154246#problem/C 题意:有多少种长方形满足 ...
- LightOJ 1341 - Aladdin and the Flying Carpet
题目链接:http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你地毯面积和最小可能边的长度,让你求有几种组合的可能. 题解:这题就厉害 ...
- LightOJ - 1341 Aladdin and the Flying Carpet 唯一分解定理LightOJ 1220Mysterious Bacteria
题意: ttt 组数据,第一个给定飞毯的面积为 sss,第二个是毯子的最短的边的长度大于等于这个数,毯子是矩形但不是正方形. 思路: 求出 sss 的所有因子,因为不可能是矩形,所以可以除以 222, ...
- 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...
随机推荐
- JPA中实现单向多对一的关联关系
场景 JPA入门简介与搭建HelloWorld(附代码下载): https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/103473937 ...
- 着色器语言GLSL入门
着色器语言 GLSL (opengl-shader-language)入门大全 -- 转载自: https://github.com/wshxbqq/GLSL-Card
- Android五大布局详解——LinearLayout(线性布局)
Android五大布局 本篇开始介绍Android的五大布局的知识,一个丰富的界面显示总是要有众多的控件来组成的,那么怎样才能让这些控件能够按你的想法进行摆放,从而自定义你所想要的用户界面呢?这就牵涉 ...
- 如何获取Html的height和width属性(网页宽、高)
1.页面如图所示 2.Html代码 <div style="color:green;" id="html_info"></div> 3. ...
- StaticList
到目前为止,我们还无法创建一个顺序存储结构线性表的对象出来,为什么呢?顺序存储空间究竟是什么,顺序存储空间的大小是多少? StaticList设计要点——类模板 使用原生数组作为顺序存储空间 使用模板 ...
- 关于Mysql修改帐号密码的多种方法
方法一: 登录Mysql进行修改(mysql的小黑框) 命令: set password for 用户名(一般为root) @localhost=password('新密码'); 方法二: 登录MyS ...
- 集合系列 List(五):Stack
Stack 是先进后出的栈结构,其并不直接实现具体的逻辑,而是通过继承 Vector 类,调用 Vector 类的方法实现. public class Stack<E> extends V ...
- BootStrap 关于input与btn的点击focus取消特效相关css
取消btn按钮点击出现的外边框: .btn:focus, /*清除btn按钮点击出现的边框*/.btn:active:focus,.btn.active:focus,.btn.focus,.btn:a ...
- 六、SQL优化
SQL优化 优化策略 一.尽量全值匹配 当建立了索引列后,尽量在where条件中使用所有的索引. CREATE TABLE `staffs`( id int primary key auto_incr ...
- linux自建https证书
一.生成单向认证的https证书 建立服务器私钥,生成RSA秘钥. 会有两次要求输入密码, 然后获得了一个server.key文件. 以后使用此文件(通过openssl提供的命令或API)可能经常回要 ...