Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】(未完成)

标签:入门讲座题解 数论


题目描述

It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery.

Aladdin was about to enter to a magical cave, led by the evil sorcerer who disguised himself as Aladdin's uncle, found a strange magical flying carpet at the entrance. There were some strange creatures guarding the entrance of the cave. Aladdin could run, but he knew that there was a high chance of getting caught. So, he decided to use the magical flying carpet. The carpet was rectangular shaped, but not square shaped. Aladdin took the carpet and with the help of it he passed the entrance.

Now you are given the area of the carpet and the length of the minimum possible side of the carpet, your task is to find how many types of carpets are possible. For example, the area of the carpet 12, and the minimum possible side of the carpet is 2, then there can be two types of carpets and their sides are: {2, 6} and {3, 4}.

Input

Input starts with an integer T (≤ 4000), denoting the number of test cases.

Each case starts with a line containing two integers: a b (1 ≤ b ≤ a ≤ 1012) where a denotes the area of the carpet and b denotes the minimum possible side of the carpet.

Output

For each case, print the case number and the number of possible carpets.

Sample Input

2

10 2

12 2

Sample Output

Case 1: 1

Case 2: 2

题意

给定\(a, b\), \(a\)


解析


通过代码

/*
Problem
LightOJ - 1341
Status
Accepted
Time
359ms
Memory
6968kB
Length
1607
Lang
C++
Submitted
2019-11-25 21:51:33
RemoteRunId
1640797
*/ #include <bits/stdc++.h>
using namespace std; typedef long long ll;
const int MAXN = 1e6 + 50; bool vis[MAXN];
int prime[MAXN], cnt = 0; inline ll read() //快读,加快程序输入速度.
{
ll res = 0;
char ch; ch = getchar(); while(!isdigit(ch))
ch = getchar(); while(isdigit(ch)){
res = (res << 3) + (res << 1) + ch - 48; ch = getchar();
} return res;
} void get_prime() //欧拉筛,先找到sqrt(n)以内的质数,方便之后质因数分解.
{
vis[1] = 1;
for(int i = 2; i <= int(1e6 + 5); i ++){
if(!vis[i])
prime[++ cnt] = i; for(int j = 1; j <= cnt && i * prime[j] <= int(1e6 + 5); j ++){
vis[i * prime[j]] = 1;
if(i % prime[j] == 0)
break;
}
}
return ;
} int main()
{
get_prime(); int times, _case = 0; scanf("%d", &times); while(times --){
ll a, b, t;
ll ans = 1; a = read(), b = read();
t = a; if(b * b >= a){ //如果最小的因数都超过了sqrt(a),那么说明不存在符合条件的成对的因数了.
printf("Case %d: 0\n", ++_case);
continue;
} for(int i = 1; i <= cnt && 1ll * prime[i] * prime[i] <= a; i ++){
if(a % prime[i] == 0){
int res = 0;
while(a % prime[i] == 0){
res ++;
a /= prime[i];
} ans *= 1ll * (res + 1);
}
}
if(a > 1)
ans <<= 1; ans >>= 1; //问有几对,两个因数算作一对.(如果是完全平方数的sqrt(a)因子,则不能算作一对.) for(ll i = 1; i < b; i ++){
if(t % i == 0)
ans --;
}
printf("Case %d: %lld\n", ++ _case, ans);
}
return 0;
}

Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】的更多相关文章

  1. Aladdin and the Flying Carpet LightOJ 1341 唯一分解定理

    题意:给出a,b,问有多少种长方形满足面积为a,最短边>=b? 首先简单讲一下唯一分解定理. 唯一分解定理:任何一个自然数N,都可以满足:,pi是质数. 且N的正因子个数为(1+a1)*(1+a ...

  2. Aladdin and the Flying Carpet LightOJ - 1341 (素数打表 + 算术基本定理)

    题意: 就是求a的因数中大于b的有几对 解析: 先把素数打表 运用算术基本定理 求出a的所有因数的个数 然后减去小于b的因数的个数 代码如下: #include <iostream> #i ...

  3. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  4. LightOJ1341 Aladdin and the Flying Carpet —— 唯一分解定理

    题目链接:https://vjudge.net/problem/LightOJ-1341 1341 - Aladdin and the Flying Carpet    PDF (English) S ...

  5. Aladdin and the Flying Carpet

    Aladdin and the Flying Carpet https://cn.vjudge.net/contest/288520#problem/C It's said that Aladdin ...

  6. C - Aladdin and the Flying Carpet 有多少种长方形满足面积为a(<=10^12),且最短边>=b;长方形边长为整数,且一定不可以是正方形。

    /** 题目:C - Aladdin and the Flying Carpet 链接:https://vjudge.net/contest/154246#problem/C 题意:有多少种长方形满足 ...

  7. LightOJ 1341 - Aladdin and the Flying Carpet

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你地毯面积和最小可能边的长度,让你求有几种组合的可能. 题解:这题就厉害 ...

  8. LightOJ - 1341 Aladdin and the Flying Carpet 唯一分解定理LightOJ 1220Mysterious Bacteria

    题意: ttt 组数据,第一个给定飞毯的面积为 sss,第二个是毯子的最短的边的长度大于等于这个数,毯子是矩形但不是正方形. 思路: 求出 sss 的所有因子,因为不可能是矩形,所以可以除以 222, ...

  9. 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...

随机推荐

  1. Java 多线程应知应会

    请简单说说 synchronized 关键字的底层原理 java 说到多线程绝对绕不开 synchronized,很多 java 工程师对 synchronized 是又爱又恨.为什么呢?主要原因包括 ...

  2. 构建Electron的常见问题(Mac)

    背景 起因是产品的需求,需要更换Electron为底层平台,但因为会有不少定制化的功能要实现,必须自己实现此类内容,所以也就导致必须自己编译Electron的源代码. 整个构建过程,看Electron ...

  3. git上传本地项目到github或者gitlib(两个是一样的)。

    第一步:在github上面创建一个repository   点击create就好了.然后会出现下面的页面. 第三步:打开你所在文件夹,或者是新建的文件夹(用来做仓库的)右键会出现下面  选用git B ...

  4. 12C新功能:在线移动分区 (Doc ID 1584032.1)

    12C New Feature: Online Move Partition (Doc ID 1584032.1) APPLIES TO: Oracle Database - Enterprise E ...

  5. nvidia-smi 常用命令使用手册

    # 定时刷新 nvidia-smi 显示的结果 nvidia-smi -l 1  # 以 1 秒的频率进行刷新 nvidia-smi -lms 1 #以 1 毫秒的频率进行刷新 #保持更新,更多内容请 ...

  6. C++ std::list 基本用法

    #include <iostream> #include <string> #include <list> using namespace std; // http ...

  7. 由异常:Repeated column in mapping for entity/should be mapped with insert="false" update="false 引发对jpa关联的思考

    由异常:Repeated column in mapping for entity/should be mapped with insert="false" update=&quo ...

  8. LeetCode 219: 存在重复元素 II Contains Duplicate II

    题目: ​ 给定一个整数数组和一个整数 k,判断数组中是否存在两个不同的索引 i 和 j,使得 nums [i] = nums [j],并且 i 和 j 的差的绝对值最大为 k. ​ Given an ...

  9. Git终端命令行的常用操作

    一.git源代码管理的优点 方便多人协同开发.工作 降低代码的管理成本 良好的分支管理机制 二.结构分析 服务端和客户端都有版本控制能力,都能进行代码的提交.合并 结构一: 结构二: 三.工作区的创建 ...

  10. Java描述设计模式(07):适配器模式

    本文源码:GitHub·点这里 || GitEE·点这里 一.适配器模式简介 1.基础概念 适配器模式把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够在 ...