逛公园「NOIP2017」最短路+DP
大家好我叫蒟蒻,这是我的第一篇信竞题解blog

【题目描述】
策策同学特别喜欢逛公园。 公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边。其中 \(1\) 号点是公园的入口, \(N\) 号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要花的时间。
策策每天都会去逛公园,他总是从 \(1\) 号点进去,从 \(N\) 号点出来。
策策喜欢新鲜的事物,他不希望有两天逛公园的路线完全一样,同时策策还是一个特别热爱学习的好孩子,他不希望每天在逛公园这件事上花费太多的时间。如果 \(1\) 号点到 \(N\) 号点的最短路长为 \(d\),那么策策只会喜欢长度不超过 \(d + K\) 的路线。
策策同学想知道总共有多少条满足条件的路线,你能帮帮他吗?
为避免输出过大,答案对 \(P\) 取模。
如果有无穷多条合法的路线,请输出 \(−1\)。
【输入格式】
第一行包含一个整数 \(T\), 代表数据组数。
接下来 \(T\) 组数据,对于每组数据:
第一行包含四个整数 \(N,M,K,PN,M,K,P\), 每两个整数之间用一个空格隔开。
接下来 \(m\) 行,每行三个整数 \(a_i,b_i,c_i\), 代表编号为 \(a_i,b_i\) 的点之间有一条权值为 \(c_i\) 的有向边,每两个整数之间用一个空格隔开。
【输出格式】
输出文件包含 \(T\) 行,每行一个整数代表答案。
【思路点拨】
是个人应该都能看出此题是要先求出最短路.jpg

亲测此题SPFA跑的比Dijkstra快
为什么?我人品好
最短路只能求出路径长度,计算路径条数似乎做不到——
然后就gg了
据说NOIP2017 Day1三题都没有DP 作为Day2压轴题 DP是压轴出场
What is DP? Is that Dui Pai?
考虑DP的子状态 肯定有一维是要存储当前的点编号
注意到此题 \(k \le 50\) 第二维可以存储当前路径1-i的长度超出了1-i最短路多少
于是 \(dp[i][j]\) 就表示\(1-i\)路径长度为 \(dis[i]\) (\(1-i\)最短路) \(+ j\) 的方案数
对于任意一个 \(u\), 设它有一条路径连向 \(v\)。
则可以推出 \(dp[u][l] = \sum dp[v][dis[u]-dis[v]+l-edge(u, v)] (1 \le l \le k)\)
然后就可以开始快乐DP了
如何判断 \(0\) 环?
dfs的时候记录一下就行了
要记得加记忆化搜索
贴心提示
日常全开\(long long\)是好习惯 多卡常 出奇迹
【代码实现】
#include <bits/stdc++.h>
#define ri register long long
using namespace std;
typedef long long ll;
ll t, n, m, k, p, ans;
ll head[200005], pre[800005], to[800005], val[800005], len;
ll head2[200005], pre2[800005], to2[800005], val2[800005], len2;
ll dis[200005], dis2[200005], visit[200005][61];
ll dp[200005][61];//又到了我们最喜欢的DP时间
bool vis[200005], ok;
inline ll read() {
ll ret = 0, flag = 1;
char ch = getchar();
while (ch > '9' || ch < '0') {
if (ch == '-') flag = -1;
ch = getchar();
}
while (ch <= '9' && ch >= '0') {
ret = (ret << 1) + (ret << 3) + (ch ^ '0');
ch = getchar();
}
return ret * flag;
}
inline void write(ll num) {
if (num > 9) write(num / 10);
putchar(num % 10 + '0');
}
inline void insert(ll u, ll v, ll w) {
pre[++len] = head[u]; head[u] = len;
to[len] = v; val[len] = w;
}
inline void insert2(ll u, ll v, ll w) {
pre2[++len2] = head2[u]; head2[u] = len2;
to2[len2] = v; val2[len2] = w;
}
inline void add(ll &a, ll b) { //究极玄学卡常
a += b;
if (a > p) {
a -= p;
}
}
inline void SPFA() {
vis[1] = 1;
dis[1] = 0;
queue<ll> q;
q.push(1);
while (!q.empty()) {
ll x = q.front();
q.pop();
for (ri i = head[x]; i != 0; i = pre[i]) {
ll y = to[i];
if (dis[y] > dis[x] + val[i]) {
dis[y] = dis[x] + val[i];
if (!vis[y]) {
vis[y] = 1;
q.push(y);
}
}
}
vis[x] = 0;
}
}
ll dfs(ll c, ll nowk) {
if (dp[c][nowk] != -1) return dp[c][nowk];
visit[c][nowk] = 1;
dp[c][nowk] = 0;
for (ri i = head2[c]; i; i = pre2[i]) {
ll next = dis[c] - dis[to2[i]] + nowk - val2[i];
if (next < 0) continue;
if (visit[to2[i]][next]) {
ok = 1;
}
add(dp[c][nowk], dfs(to2[i], next));
}
visit[c][nowk] = 0;
return dp[c][nowk];
}
void This_is_a_dp() {
dp[1][0] = 1;
for (ri i = 0; i <= k; i++) {
add(ans, dfs(n, i));
}
}
int main() {
t = read();
while (t--) {
memset(head, 0, sizeof(head));
memset(head2, 0, sizeof(head2));
memset(dp, -1, sizeof(dp));
memset(visit, 0, sizeof(visit));
memset(vis, 0, sizeof(vis));
memset(dis, 0x7f, sizeof(dis));
ok = 0;
len = ans = len2 = 0;
n = read();
m = read();
k = read();
p = read();
for (ri i = 1; i <= m; i++) {
ll u, v, w;
u = read();
v = read();
w = read();
insert(u, v, w);
insert2(v, u, w);
}
SPFA();
/*DP!*/
This_is_a_dp();
dfs(n, k + 1);
if (ok) {
puts("-1");
continue;
}
write(ans); puts("");
}
return 0;
}
时间复杂度 \(O((k+x)m)\) \((x\)为\(SPFA\)玄学次数\()\)
逛公园「NOIP2017」最短路+DP的更多相关文章
- 「NOIP2017」宝藏
「NOIP2017」宝藏 题解 博客阅读效果更佳 又到了一年一度NOIPCSP-S 赛前复习做真题的时间 于是就遇上了这道题 首先观察数据范围 \(1 \le n \le 12\) ,那么极大可能性是 ...
- 「luogu4366」最短路
「luogu4366」最短路 传送门 直接连边显然不行,考虑优化. 根据异或的结合律和交换律等优秀性质,我们每次只让当前点向只有一位之别的另一个点连边,然后就直接跑最短路. 注意点数会很多,所以用配对 ...
- NOIP2017 逛公园 题解报告 【最短路 + 拓扑序 + dp】
题目描述 策策同学特别喜欢逛公园.公园可以看成一张NNN个点MMM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NNN号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花 ...
- NOIP 2017 逛公园 记忆化搜索 最短路 好题
题目描述: 策策同学特别喜欢逛公园.公园可以看成一张N个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. ...
- LOJ2316. 「NOIP2017」逛公园【DP】【最短路】【思维】
LINK 思路 因为我想到的根本不是网上的普遍做法 所以常数出奇的大,而且做法极其暴力 可以形容是带优化的大模拟 进入正题: 首先一个很显然的思路是如果在合法的路径网络里面存在零环是有无数组解的 然后 ...
- 【LOJ2316】「NOIP2017」逛公园
[题目链接] [点击打开链接] [题目概括] 对给定\(K\),起点\(1\)到终点\(n\)中对长度为\([L,L+K]\)的路径计数. \(L\)为\(1\)到\(n\)的最短路长度. [思路要点 ...
- 「NOIP2017」逛公园
传送门 Luogu 解题思路 考虑 \(\text{DP}\). 设 \(f[u][k]\) 表示从 \(u\) 到 \(n\) 走过不超过 \(Mindis(u, n) + k\) 距离的方案数. ...
- loj2314 「NOIP2017」小凯的疑惑[同余最短路or数论]
这题以前就被灌输了“打表找规律”的思想,所以一直没有好好想这道题,过了一年还不太会qwq.虽然好像确实很简单,但是还是带着感觉会被嘲讽的心态写这个题解...而且还有一个log做法不会... 法1:(一 ...
- loj2318 「NOIP2017」宝藏[状压DP]
附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}dep ...
随机推荐
- 一篇文章学会Docker命令
目录 简介 镜像仓库 login pull push search 本地镜像管理 images rmi tag build history save load import 容器操作 ps inspe ...
- windows登陆suse虚拟机
vmware我还是比较偏向7.1.4版本,其他版本装在win7上似乎有点问题. windows平台下,使用vmware + opensuse的网络配置过程如下: 装完vm后,会在本地连接新创建两个新连 ...
- [原创]实现MongoDB数据库审计SQL语句的脚本
功能:实现具体显示mongodb数据库表操作语句的状态和情况,使用awk和shell实现抓取和分析处理.脚本内容如下: #!/bin/bash if [ $# == 0 ];then echo &qu ...
- 默认文档接卸--手机web app开发笔记(二)
首先我们启动HBuilderX2.0 ,界面如图2-1所示 图2-1 软件开发界面 单击“文件—新建—项目”,弹出新建项目管理界面,我们在里面进行了项目类型选择“5+APP”.项目名称填写“编程之路” ...
- C# 针对特定的条件进行锁操作,不用lock,而是mutex
背景:用户领取优惠券,同一个用户需要加锁验证是否已经领取,不同用户则可以同时领取. 上代码示例: 1.创建Person类 /// <summary> /// Person类 /// < ...
- Netty中的策略者模式
策略者模式的特点 在设计类的继承体系时,我们会刻意的把公共的部分都提取到基类中 比如先设计Person类,把人类都具有的行为放到这个Person,特有的行为设计成抽象方法,让子类具体去实现, 这样后续 ...
- 我狠起来连自己都打---如何简单实现Azure resource自动打标签
你是否还在为花费大量Azure Resource打标签而烦恼呢?你是否还在因为这样低效的重复劳动而痛苦呢? 在很长一段时间内,笔者既要做云架构调整,又要做日常系统维护,还要参与各种各样的项目,在这种情 ...
- 使用Docker运行SQL Server
现在.net core已经跨平台了,大家也都用上了linux用上了docker.跟.net经常配套使用的SQL SERVER以前一直是windows only,但是从SQL Server 2017开始 ...
- PHP 跨域处理
PHP 跨域处理 跨域访问失败是会出现 No 'Access-Control-Allow-Origin' header is present on the requested resource. Or ...
- windows无法执行 git reset head^版本回退操作的正确打开方式
^是cmd.exe的escape字符,属于特殊字符,命令里要用到文字 ^ 时必须用双引号把它夹起来,因此只要如下就可以正确执行: git reset head"^"或者git re ...