This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form:

这个例子演示了如何用岭回归去近似一个函数用n_degree级的多项式级数。具体而言,从n_samples 1d个点,这满足去建立一个范德蒙德矩阵,有n_samples行,n_degree+1列。有如下的形式:

[[1,x1,x1∗∗2,x1∗∗3,…],[1,x2,x2∗∗2,x2∗∗3,…],…][[1,x1,x1∗∗2,x1∗∗3,…],[1,x2,x2∗∗2,x2∗∗3,…],…] [[1, x_1, x_1 ** 2, x_1 ** 3, …], \\ [1, x_2, x_2 ** 2, x_2 ** 3, …], …] [[1,x1​,x1​∗∗2,x1​∗∗3,…],[1,x2​,x2​∗∗2,x2​∗∗3,…],…]

Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel.

直觉上来说,这个矩阵可以被理解为伪特征的矩阵。这些点提升到能量。
这个矩阵类似于(但不同于) 多项式核生成的矩阵。

This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces.

这个例子显示,你可以用线性模型做非线性回归,通过管道来添加非线性特征。核方法扩展了这个想法,可以导出非常高维的(甚至是无限维)的特征空间。

实验过程

  • 注意:

    • 这里是用高阶多项式来进行岭回归
    • 本质上不是我们日常所说的插值,因为插值点其实并不在对应的位置上。
    • 这里说的特征,在其实在fit之前只有一个多项式作为了特征。后面说到了这里采用的是岭回归。

# %pylab inline
# 如果是jupyter notebook就把上面一行注释去掉~
import numpy as np
import matplotlib.pyplot as plt from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline def f(x):
""" function to approximate by polynomial interpolation"""
return x * np.sin(x) # generate points used to plot
x_plot = np.linspace(0, 10, 100) # 随机获取20个插值点
# generate points and keep a subset of them
x = np.linspace(0, 10, 100) # 生成100个数据
rng = np.random.RandomState(0)
rng.shuffle(x) # 随机打乱这个数据
x = np.sort(x[:20]) # 将前20个数据排序
y = f(x) # 放入f之中,获取散点的值 # create matrix versions of these arrays
X = x[:, np.newaxis] # 将该数据提高一个维度
X_plot = x_plot[:, np.newaxis] colors = ['teal', 'yellowgreen', 'gold'] # 颜色集合
lw = 2 # 线宽度 # 真实数据所构成的曲线
plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw,
label="ground truth") # 散点图,描出插值点
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points") for count, degree in enumerate([3, 4, 5]):
# 用degree的多项式特征结合上岭回归放入到管道之中构建模型
model = make_pipeline(PolynomialFeatures(degree), Ridge())
# print(model)
model.fit(X, y) # 训练模型
y_plot = model.predict(X_plot) # 做出预测 # 描绘出插值曲线
plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,
label="degree %d" % degree) plt.legend(loc='lower left')
plt.show()
 

将for循环部分改成这样子:

for count, degree in enumerate([3]):
# 用degree的多项式特征结合上岭回归放入到管道之中构建模型
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(X, y) # 训练模型
y_plot = model.predict(X_plot) # 做出预测 # 描绘出插值曲线
plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,
label="degree %d-Ridge" % degree) model = make_pipeline(PolynomialFeatures(degree), LinearRegression())
model.fit(X, y) # 训练模型
y_plot = model.predict(X_plot) # 做出预测 # 描绘出插值曲线
plt.plot(x_plot, y_plot, color=colors[len(colors) - 1 - count], linewidth=lw,
label="degree %d-linear" % degree)
 

输出的图像为:(只需要将数值从3改成其他degree就可以生成其他图片了)

思考

  • 观察:会发现岭回归的结果会线性回归的结果稍显波动小些。
  • 回答:岭回归多加了一个L2的范数 约束了多项式特征的w的大小。

(转)Polynomial interpolation 多项式插值的更多相关文章

  1. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  2. 【转载】interpolation(插值)和 extrapolation(外推)的区别

    根据已有数据以及模型(函数)预测未知区域的函数值,预测的点在已有数据范围内就是interpolation(插值), 范围外就是extrapolation(外推). The Difference Bet ...

  3. codeforces 955F Cowmpany Cowmpensation 树上DP+多项式插值

    给一个树,每个点的权值为正整数,且不能超过自己的父节点,根节点的最高权值不超过D 问一共有多少种分配工资的方式? 题解: A immediate simple observation is that ...

  4. 【Codechef】Chef and Bike(二维多项式插值)

    something wrong with my new blog! I can't type matrixs so I come back. qwq 题目:https://www.codechef.c ...

  5. 整数拆分 [dp+多项式插值]

    题意 $1 \leq n \leq 10^{18}$ $2 \leq m \leq 10^{18}$ $1 \leq k \leq 20$ 思路 n,m较小 首先考虑朴素的$k=1$问题: $f[i] ...

  6. 数值计算方法实验之newton多项式插值 (Python 代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  7. 数值计算方法实验之Hermite 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  8. 数值计算方法实验之Newton 多项式插值(MATLAB代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  9. 数值计算方法实验之Lagrange 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

随机推荐

  1. 《Java基础知识》Java IO流详解

    Java IO概念 1. 用于设备之间的数据传输. 2. Java 将操作数据流的功能封装到了IO包中. 3. 数据流流向分:输入流和输出流,操作对象为文件. 4. 流按照操作数据分:字节流(通用)和 ...

  2. Integer 数值比较

    //Integer 源码    private static class IntegerCache {         static final int low = -128;         sta ...

  3. SpringBoot电商项目实战 — Zookeeper的分布式锁实现

    上一篇演示了基于Redis的Redisson分布式锁实现,那今天我要再来说说基于Zookeeper的分布式现实. Zookeeper分布式锁实现 要用Zookeeper实现分布式锁,我就不得不说说zo ...

  4. ubuntu14.04编译vim8.1

    安装依赖 这一步其实我没做,直接下载编译成功了.估计有些包不是必需的.姑且列在这里供参考 sudo apt install libncurses5-dev libgnome2-dev libgnome ...

  5. Gradle Java 插件

    Java 插件是构建 JVM 项目的基础,它为项目增加了很多能力,例如编译,测试,打包,发布等等. 很多插件都是基于 Java 插件实现的,例如 Android 插件. 用法 使用 id 应用插件 p ...

  6. everspin自旋转矩MRAM技术

    MRAM的主体结构由三层结构的MTJ构成:自由层(free layer),固定层和氧化层.自由层与固定层的材料分别是CoFeB和MgO.MRAM 是一种非易失性的磁性随机存储器.它拥有静态随机存储器( ...

  7. Elasticsearch系列---初识Elasticsearch

    Elasticsearch是什么? Elasticsearch简称ES,是一个基于Lucene构建的开源.分布式.Restful接口的全文搜索引擎,还是一个分布式文档数据库.天生就是分布式.高可用.可 ...

  8. CSS入门(边框、轮廓、元素的分类、盒子模型的三个构成部分)

    一.边框属性 作用:给元素加上一个边框 第一种: border-top border-bottom border-left boder-right 三个属性值: 粗细 线型 颜色 第二种: borde ...

  9. Thymeleaf 之 内置对象、定义变量、URL参数及标签自定义属性

    Thymeleaf 之 内置对象.定义变量.URL参数及标签自定义属性 本文章来自[知识林] 如标题所述,这篇文章主要讲述Thymeleaf中的内置对象(list解析.日期格式化.数字格式化等).定义 ...

  10. 将Android封装库通过gradle部署到maven私服并依赖使用

    一.在需要发布的模块chrisbaselibrary下的build.gradle中添加以下部分 //maven插件 apply plugin: 'maven' //打包main目录下代码和资源的 ta ...