This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form:

这个例子演示了如何用岭回归去近似一个函数用n_degree级的多项式级数。具体而言,从n_samples 1d个点,这满足去建立一个范德蒙德矩阵,有n_samples行,n_degree+1列。有如下的形式:

[[1,x1,x1∗∗2,x1∗∗3,…],[1,x2,x2∗∗2,x2∗∗3,…],…][[1,x1,x1∗∗2,x1∗∗3,…],[1,x2,x2∗∗2,x2∗∗3,…],…] [[1, x_1, x_1 ** 2, x_1 ** 3, …], \\ [1, x_2, x_2 ** 2, x_2 ** 3, …], …] [[1,x1​,x1​∗∗2,x1​∗∗3,…],[1,x2​,x2​∗∗2,x2​∗∗3,…],…]

Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel.

直觉上来说,这个矩阵可以被理解为伪特征的矩阵。这些点提升到能量。
这个矩阵类似于(但不同于) 多项式核生成的矩阵。

This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces.

这个例子显示,你可以用线性模型做非线性回归,通过管道来添加非线性特征。核方法扩展了这个想法,可以导出非常高维的(甚至是无限维)的特征空间。

实验过程

  • 注意:

    • 这里是用高阶多项式来进行岭回归
    • 本质上不是我们日常所说的插值,因为插值点其实并不在对应的位置上。
    • 这里说的特征,在其实在fit之前只有一个多项式作为了特征。后面说到了这里采用的是岭回归。

# %pylab inline
# 如果是jupyter notebook就把上面一行注释去掉~
import numpy as np
import matplotlib.pyplot as plt from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline def f(x):
""" function to approximate by polynomial interpolation"""
return x * np.sin(x) # generate points used to plot
x_plot = np.linspace(0, 10, 100) # 随机获取20个插值点
# generate points and keep a subset of them
x = np.linspace(0, 10, 100) # 生成100个数据
rng = np.random.RandomState(0)
rng.shuffle(x) # 随机打乱这个数据
x = np.sort(x[:20]) # 将前20个数据排序
y = f(x) # 放入f之中,获取散点的值 # create matrix versions of these arrays
X = x[:, np.newaxis] # 将该数据提高一个维度
X_plot = x_plot[:, np.newaxis] colors = ['teal', 'yellowgreen', 'gold'] # 颜色集合
lw = 2 # 线宽度 # 真实数据所构成的曲线
plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw,
label="ground truth") # 散点图,描出插值点
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points") for count, degree in enumerate([3, 4, 5]):
# 用degree的多项式特征结合上岭回归放入到管道之中构建模型
model = make_pipeline(PolynomialFeatures(degree), Ridge())
# print(model)
model.fit(X, y) # 训练模型
y_plot = model.predict(X_plot) # 做出预测 # 描绘出插值曲线
plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,
label="degree %d" % degree) plt.legend(loc='lower left')
plt.show()
 

将for循环部分改成这样子:

for count, degree in enumerate([3]):
# 用degree的多项式特征结合上岭回归放入到管道之中构建模型
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(X, y) # 训练模型
y_plot = model.predict(X_plot) # 做出预测 # 描绘出插值曲线
plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,
label="degree %d-Ridge" % degree) model = make_pipeline(PolynomialFeatures(degree), LinearRegression())
model.fit(X, y) # 训练模型
y_plot = model.predict(X_plot) # 做出预测 # 描绘出插值曲线
plt.plot(x_plot, y_plot, color=colors[len(colors) - 1 - count], linewidth=lw,
label="degree %d-linear" % degree)
 

输出的图像为:(只需要将数值从3改成其他degree就可以生成其他图片了)

思考

  • 观察:会发现岭回归的结果会线性回归的结果稍显波动小些。
  • 回答:岭回归多加了一个L2的范数 约束了多项式特征的w的大小。

(转)Polynomial interpolation 多项式插值的更多相关文章

  1. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  2. 【转载】interpolation(插值)和 extrapolation(外推)的区别

    根据已有数据以及模型(函数)预测未知区域的函数值,预测的点在已有数据范围内就是interpolation(插值), 范围外就是extrapolation(外推). The Difference Bet ...

  3. codeforces 955F Cowmpany Cowmpensation 树上DP+多项式插值

    给一个树,每个点的权值为正整数,且不能超过自己的父节点,根节点的最高权值不超过D 问一共有多少种分配工资的方式? 题解: A immediate simple observation is that ...

  4. 【Codechef】Chef and Bike(二维多项式插值)

    something wrong with my new blog! I can't type matrixs so I come back. qwq 题目:https://www.codechef.c ...

  5. 整数拆分 [dp+多项式插值]

    题意 $1 \leq n \leq 10^{18}$ $2 \leq m \leq 10^{18}$ $1 \leq k \leq 20$ 思路 n,m较小 首先考虑朴素的$k=1$问题: $f[i] ...

  6. 数值计算方法实验之newton多项式插值 (Python 代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  7. 数值计算方法实验之Hermite 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  8. 数值计算方法实验之Newton 多项式插值(MATLAB代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  9. 数值计算方法实验之Lagrange 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

随机推荐

  1. linux指令-date

    1.在linux中要显示日期,则可以直接输入指令date 2.如果想以这样2016/12/26的方式输出呢,那就是,Y是年份,m是月份,d是日 date +%Y/%m/%d 3.如果要显示时间,则da ...

  2. C#线程学习笔记九:async & await入门二

    一.异步方法返回类型 只能返回3种类型(void.Task和Task<T>). 1.1.void返回类型:调用方法执行异步方法,但又不需要做进一步的交互. class Program { ...

  3. MongoDB(七):聚合aggregate

    1. 聚合aggregate 聚合主要用于计算数据,类似sql中的sum().avg() 语法: db.集合名称.aggregate([{管道:{表达式}}]) stu准备的数据: db.stu.in ...

  4. 不加班的秘诀:如何通过AOE快速集成NCNN?

    作为我司头发储量前三的程序员 始终仗着头发多奋斗在加班的第一线 时时灵魂拷问自己 年轻人,你凭什么不加班? 虽然我没有女朋友但是,我有代码呀 但我不明白的是,隔壁工位那个,到岗比我迟,下班比我早,天天 ...

  5. android只设置部分控件随着软键盘的出现而腾出空间

    转载请标明出处:https://www.cnblogs.com/tangZH/p/12013685.html 在项目过程中,出现了一个需求,软键盘要顶起部分控件,而另一部分控件不动. 关于这种需求,我 ...

  6. 如何编写一个工程文件夹下通用的Makefile

    新建工程文件夹,在里面新建 bsp.imx6ul.obj 和project 这 3 个文件夹,完成以后如图所示: 新建的工程根目录文件夹 其中 bsp 用来存放驱动文件:imx6ul 用来存放跟芯片有 ...

  7. leetcode——二分

    (1)4. 寻找两个有序数组的中位数(中) https://leetcode-cn.com/problems/median-of-two-sorted-arrays/ 给定两个大小为 m 和 n 的有 ...

  8. 《Netty Zookeeper Redis 高并发实战》 图书简介

    <Netty Zookeeper Redis 高并发实战> 图书简介 本书为 高并发社群 -- 疯狂创客圈 倾力编著, 高度剖析底层原理,深度解读面试难题 疯狂创客圈 Java 高并发[ ...

  9. Spring中常见的设计模式——委派模式

    一.委派模式的定义及应用场景 委派模式(Delegate Pattern)的基本作用是负责任务的调用和分配,跟代理模式很像,可以看做特殊情况下的静态的全权代理,但是代理模式注重过程,而委派模式注重结果 ...

  10. Python中定义只读属性

    Python是面向对象(OOP)的语言, 而且在OOP这条路上比Java走得更彻底, 因为在Python里, 一切皆对象, 包括int, float等基本数据类型. 在Java里, 若要为一个类定义只 ...