【SDOI 2015】约数个数和
Problem
Description
设 \(d(x)\) 为 \(x\) 的约数个数,给定 \(N\)、\(M\),求
\]
Input Format
输入文件包含多组测试数据。
第一行,一个整数 \(T\),表示测试数据的组数。
接下来的 \(T\) 行,每行两个整数 \(N\)、\(M\)。
Output Format
\(T\) 行,每行一个整数,表示你所求的答案。
Sample
Input
2
7 4
5 6
Output
110
121
Range
对于所有的数据,\(1 \leq N, M \leq 50000,\ 1 \leq T \leq 50000\)。
Algorithm
莫比乌斯反演
Mentality
显然是莫比乌斯反演啊!
不过做这题的话,我们不难发现:\(d(ij)\) 非常的不好求!如果枚举因数的话,那肯定会出锅,因为 \(ij\) 最高有 \(10^{10}\) ,所以必定超时。那怎么办呢?
可以考虑从 \(i\) 与 \(j\) 的因数入手。
那么我们先考虑 \(i\) ,对于任意一个数 \(i\) ,它必定都能分解成 \(i=\prod_{p\in prime}p^{x_p}\) 次方这样的形式,其中 \(x\) 数列为 \(i\) 的每个质因子的次数序列。
所以,我们先考虑怎么求 \(d(i)\) ,我们可以枚举 \(i\) 的每个质因子选多少个乘起来,由于每一个不同的数分解成的质因数乘法必定是唯一的,所以我们只需要枚举有多少个本质不同的质因数乘法序列即可。由于还要再加上不选这个因数的选择,所以 \(d(i)\) 的计算方法即为:
\]
从这个角度入手,我们就可以考虑如何计算 \(d(ij)\) 了,设 \(y\) 数列为 \(j\) 的每个质因子次数序列,则也有:
\]
那么如何计算 \(d(ij)\) 呢?其实从枚举质因子的角度来看,就很简单了。我们可以枚举 \(i\) 和 \(j\) 的因数 \(a|i\) 与 \(b|j\) ,则 \(ab\) 亦为 \(ij\) 的因数之一。不难发现,我们的重点是在枚举两个因数的时候,避免两个因数的质因数分解序列的乘积与之前出现过的乘积有重合,那怎么办呢?
回忆一下:当我们思考怎么计算 \(d(i)\) 的时候,我们的第一想法是可以枚举每个质因子选多少个,这种时候,对于一个质因子 \(p\) 而言,它在枚举序列中会被枚举出 \(x_p\) 种不同的大小,即:\(p^1,p^2,\dots ,p^{x_p}\) 这几个不同的数。也即 \(p\) 这一位总共会被枚举 \(x_p\) 次。
那么我们发现,当在计算 \(d(ij)\) 时,只需要保证每个质因子被枚举相应次数即可。
换句话说,对于 \(p|ij\) ,它理应被枚举 \(x_p+y_p\) 次!
那么当我们枚举 \(a|i\) 和 \(b|j\) 时,应该怎么处理呢?
其实这时,你会发现一个很简单的事情,那就是我们只需要确保 \(gcd(a,b)=1\) ,那么 \(a,b\) 中就不会含有相同的质因子。那么当我们枚举某个质因子 \(p|a\) 的时候,它会被枚举 \(x_p\) 次,而当我们枚举 \(p|b\) 时,它会被枚举 \(y_p\) 次!
换句话说,只需要确保 \(gcd(a,b)=1\) ,就能使枚举过程中,不会出现重复的质因子序列了!
所以,我们可以得到 \(d(ij)\) 的表达式了:
\]
接下来就是很简单的套路了!
先设 \(n\le m\)
\]
\]
接着,根据常见套路,我们改为枚举 \(x,y\) :
\]
\]
再把莫比乌斯函数套进去:
\]
再次根据常见套路,我们改为枚举 \(d\) :
\]
那么又一次根据常见套路,继续减少枚举次数:
\]
为了更直观地体现,我们需要根据乘法分配率将式子分成两个部分分别计算,然后乘在一起:
\]
那么我们就这样得到了最终的式子。
接下来,我们只需要正常整除分块就好了!因为对于式子中的 \(\lfloor\frac{n}{xd}\rfloor\) 来讲呢,我们可以拆成 \((n/d)/x\) ,所以就可以预处理一个函数 \(f(x)=\sum_{i=1}^x \lfloor\frac{x}{i}\rfloor\) ,则:
\]
再预处理一下 \(\mu\) 函数的前缀和,那么一切都只是整除分块而已,分块后面两个函数的值即可,吸溜。
Code
#include <cstdio>
#include <iostream>
using namespace std;
int T, n, m;
int cntp, pri[50001];
long long ans, mu[50001], f[50001];
bool vis[50001];
void init() {
mu[1] = 1;
for (int i = 2; i <= 50000; i++) {
if (!vis[i]) pri[++cntp] = i, mu[i] = -1;
for (int j = 1; j <= cntp && pri[j] * i <= 50000; j++) {
vis[pri[j] * i] = true;
if (!(i % pri[j])) break;
mu[pri[j] * i] = -mu[i]; //求莫比乌斯函数
}
}
for (int i = 1; i <= 50000; i++) mu[i] += mu[i - 1]; //前缀和
for (int i = 1; i <= 50000; i++)
for (int l = 1, r; l <= i; l = r + 1) {
r = i / (i / l);
f[i] += 1ll * (r - l + 1) * (i / l);
} //求 f 函数
}
int main() {
freopen("3327.in", "r", stdin);
freopen("3327.out", "w", stdout);
cin >> T;
init();
while (T--) {
scanf("%d%d", &n, &m);
if (n > m) swap(n, m);
ans = 0;
for (int l = 1, r; l <= n; l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans +=
1ll * (mu[r] - mu[l - 1]) * f[n / l] * f[m / l]; //整除分块计算答案
}
printf("%lld\n", ans);
}
}
【SDOI 2015】约数个数和的更多相关文章
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- [SDOI 2015]约数个数和
Description 设d(x)为x的约数个数,给定N.M,求 $\sum^N_{i=1}\sum^M_{j=1}d(ij)$ Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试 ...
- SDOI 2015 约束个数和
Description: 共\(T \le 5 \times 10^4\)组询问, 每组询问给定\(n\)和\(m\), 请你求出 \[ \sum_{i = 1}^n \sum_{j = 1}^m \ ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...
- [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
- hdu1492(约数个数定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...
- UVA294DIvisors(唯一分解定理+约数个数)
题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...
随机推荐
- django基础之day08,分页器从无到有,动态思路解析全过程
*********分页器从无到有的全过程,动态思路解析如下:******** 1.通过book_queryset = models.Book.objects.all()[start_num:end_n ...
- 2016/09/21 context.getConfiguration().get()
查看api:http://hadoop.apache.org/docs/stable/api/ public String get(String name) Get the value of the ...
- 基于C#WPF框架——动画
WPF提供了一个更高级的模型,通过该模型可以只关注动画的定义,而不必考虑它们的渲染方式.这个模型基于依赖项属性基础架构.本质上,WPF动画只不过是在一段时间间隔内修染方式.这个模型基于依赖项属性基础架 ...
- 一起学MyBatis之入门篇(2)
概述 本文主要讲解MyBatis中类型转换的功能,其实在MyBatis中,提供了默认的数据类型之间的转换,但只是基本数据类型的转换,如果跨类型进行转换,则需要自定义转换类,如java中是boolean ...
- Gradle 自定义插件
使用版本 5.6.2 插件被用来封装构建逻辑和一些通用配置.将可重复使用的构建逻辑和默认约定封装到插件里,以便于其他项目使用. 你可以使用你喜欢的语言开发插件,但是最终是要编译成字节码在 JVM 运行 ...
- 解决Android调用相机拍照,要报“打开相机失败”查看debug日志显示“setParameters failed”的问题
使用CameraLibrary项目,在部分手机或平板上不能正常使用,要报“打开相机失败”查看debug日志显示“setParameters failed”. 找到CameraView.java中的se ...
- CMake工程找不到相应的cuDNN版本的问题
(1) 去官网下载相应的版本,因为电脑之前安装的是 CUDA8. ,找跟 CUDA 版本兼容的 cuDNN 下载即可,我选择的是 cuDNN v7.(Deb) 和 cuDNN v7.1.4 Deve ...
- RabbitMQ异常注意 reply-code=404, reply-text=NOT_FOUND - no exchange 'topic' in vhost '/', class-id=50, method-id=
第一次,一定要先启动Provider再启动Consumer!!! rabbitmq为初始状态没有队列信息,然后我又没有启动consumer,所以导致provider找不到queue和exchange. ...
- How to: Initialize Business Objects with Default Property Values in Entity Framework 如何:在EF中用默认属性值初始化业务对象
When designing business classes, a common task is to ensure that a newly created business object is ...
- Java EE 基本开发流程及数据库连接池 Druid
一. 公司开发基本流程 a. 了解需求信息(比较模糊) 需求,不是别人告诉你的,是你自己挖掘出来的. 售前工程师(对行业知识了解):编程学不好,但懂点代码,对人的综合 ...