牛客OI测试赛 F 子序列 组合数学 欧拉降幂公式模板
链接:https://www.nowcoder.com/acm/contest/181/F
来源:牛客网
题目描述
输入描述:
第一行一个整数T,表示数据组数。
对于每组数据,第一行两个整数N,k,含义如题所示 接下来一行N个整数,表示给出的序列 保证序列内的数互不相同
输出描述:
对于每组数据,输出一个整数表示答案,对
取模
每组数据之间以换行分割
输入例子:
3
4 3
5 3 1 4
5 4
3 7 5 2 1
10 3
100 1020 2050 102 12 235 4 57 32135 54354
输出例子:
144
81000
521918013
-->
备注:
对于
的数据:
对于
的数据:
对于
的数据:
保证序列中的元素互不相同且
,

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e3 + 10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
ll qow( ll a, ll b ) {
ll ans = 1;
while(b) {
if(b&1) {
ans = ans*a%mod;
}
a = a*a%mod;
b /= 2;
}
return ans;
}
ll c[maxn][maxn];
//两种欧拉函数求降幂数,第一种更快点
map<ll,ll> mp;
ll phi(ll k)
{
ll i,s=k,x=k;
if (mp.count(k)) return mp[x]; //记忆化存储
for(i = 2;i * i <= k; i++)
{
if(k % i == 0) s = s / i * (i - 1);
while(k % i == 0) k /= i;
}
if(k > 1) s = s / k * (k - 1);
mp[x]=s; return s;
}
ll eular( ll n ) {
ll ans = n;
for( ll i = 2; i*i <= n; i ++ ) {
if( n%i == 0 ) {
ans -= ans/i;
while( n%i == 0 ) {
n /= i;
}
}
}
if( n > 1 ) {
ans -= ans/n;
}
return ans;
}
int main() {
ll T;
scanf("%lld",&T);
//debug(eular(mod)); 利用欧拉函数求指数循环节,这里求得的是mod-1
memset(c,0,sizeof(c));
c[0][0] = 1;
for( ll i = 1; i <= 1000; i ++) {
for( ll j = 0; j <= i; j ++) {
if( j == 0 || j == i ) c[i][j] = 1;
else c[i][j] = ( c[i-1][j-1] + c[i-1][j] ) % (mod-1);
}
}
while( T -- ) {
ll n, m, a[maxn];
scanf("%lld%lld",&n,&m);
for( ll i = 1; i <= n; i ++ ) {
scanf("%lld",&a[i]);
}
sort(a+1,a+n+1);
ll ans = 1;
for( ll i = 1; i <= n; i ++ ) {
ll t = ((c[n-1][m-1]-c[i-1][m-1]-c[n-i][m-1])%(mod-1)+mod-1)%(mod-1);
ans = ans*qow(a[i],t)%mod;
}
printf("%lld\n",ans);
}
return 0;
}
牛客OI测试赛 F 子序列 组合数学 欧拉降幂公式模板的更多相关文章
- 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契
牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...
- 牛客OI测试赛 C 序列 思维
链接:https://www.nowcoder.com/acm/contest/181/C来源:牛客网 题目描述 小a有n个数,他想把他们划分为连续的权值相等的k段,但他不知道这是否可行. 每个数都必 ...
- 牛客OI测试赛1
题目链接: https://www.nowcoder.com/acm/contest/181#question A.斐波拉契 求$f[n-1]*f[n+1]-f[n]^2$,$f[n]$为斐波拉契数列 ...
- [牛客OI测试赛2]F假的数学游戏(斯特灵公式)
题意 输入一个整数X,求一个整数N,使得N!恰好大于$X^X$. Sol 考试的时候只会$O(n)$求$N!$的前缀和啊. 不过最后的结论挺好玩的 $n! \approx \sqrt{2 \pi n} ...
- 牛客oi测试赛 二 B 路径数量
题目描述 给出一个 n * n 的邻接矩阵A. A是一个01矩阵 . A[i][j]=1表示i号点和j号点之间有长度为1的边直接相连. 求出从 1 号点 到 n 号点长度为k的路径的数目. 输入描述: ...
- 牛客OI测试赛2
题目链接:https://www.nowcoder.com/acm/contest/185#question A.无序组数 暴力求出A和B的因子,注意二元组是无序的,因此还要考虑有些因子在A和B中都存 ...
- 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...
- BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...
- 2018 焦作网络赛 G Give Candies ( 欧拉降幂 )
题目链接 题意 : 给出 N 个糖果.老师按顺序给 1~N 编号的学生分配糖果.每个学生要么不分.要么最少分一个.且由于是按顺序发放.那么对于某个有分到糖果的编号为 i 的学生.则 1~(i-1) 这 ...
随机推荐
- 【iOS】PLA 3.3.12
发件人 Apple Program License Agreement PLA We found that your app uses the Advertising Identifier but d ...
- interceptor拦截器
fifter.servlet.interceptor fifter用来处理请求头.请求参数.编码的一些设置,然后转交给servlet,处理业务,返回 servlet现在常用的spring,servle ...
- 【POJ - 1064】Cable master(二分)
Cable master Descriptions 输入2个数 N K n条绳子 要分成大于等于k段 求每段最长多长呢?并且每段不能小于1cm 必须以厘米精度写入数字,小数点后正好是两位数.如 ...
- HTML 第4章初始CSS3
什么是CSS? CSS全称为层叠样式表,通常又称为风格样式表. 引用CSS样式: 语法: <h1 styske="color:red;">style属性的应用</ ...
- Java模拟并解决缓存穿透
什么叫做缓存穿透 缓存穿透只会发生在高并发的时候,就是当有10000个并发进行查询数据的时候,我们一般都会先去redis里面查询进行数据,但是如果redis里面没有这个数据的时候,那么这10000个并 ...
- 同时启动多个tomcat,端口修改
所用Tomcat服务器都为zip 版,非安装版.以 tomcat8 为例: 安装第二个Tomcat完成后,打开 tomcat/conf/server.xml 文件,查找以下三处: 1. 修改http访 ...
- Java小白进阶之值传递-引用传递
class ClassA{ int value;//成员变量 } public class TestClassA{ public static void main(String args[]){ in ...
- html的一些基本属性介绍
一.html的属性类型: 1.常见标签属性: a.<h1>:align对其方式 例如:<h1 align="right"> hhhhh</ ...
- 重读《学习JavaScript数据结构与算法-第三版》- 第3章 数组(一)
定场诗 大将生来胆气豪,腰横秋水雁翎刀. 风吹鼍鼓山河动,电闪旌旗日月高. 天上麒麟原有种,穴中蝼蚁岂能逃. 太平待诏归来日,朕与先生解战袍. 此处应该有掌声... 前言 读<学习JavaScr ...
- js五子棋游戏代码分享
HTML代码 <canvas id="game"></canvas> CSS代码 * { margin: 0; padding: 0; } #game { ...