今天晚上,笔者接到客户的一个需要,那就是:对多分类结果的每个类别进行指标评价,也就是需要输出每个类型的精确率(precision),召回率(recall)以及F1值(F1-score)。

  对于这个需求,我们可以用sklearn来解决,方法并没有难,笔者在此仅做记录,供自己以后以及读者参考。

  我们模拟的数据如下:

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

其中y_true为真实数据,y_pred为多分类后的模拟数据。使用sklearn.metrics中的classification_report即可实现对多分类的每个类别进行指标评价。

  示例的Python代码如下:

# -*- coding: utf-8 -*-
from sklearn.metrics import classification_report y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海'] t = classification_report(y_true, y_pred, target_names=['北京', '上海', '成都']) print(t)

输出结果如下:

              precision    recall  f1-score   support

          北京       0.75      0.75      0.75         4
上海 1.00 0.67 0.80 3
成都 0.50 0.67 0.57 3 accuracy 0.70 10
macro avg 0.75 0.69 0.71 10
weighted avg 0.75 0.70 0.71 10

需要注意的是,输出的结果数据类型为str,如果需要使用该输出结果,则可将该方法中的output_dict参数设置为True,此时输出的结果如下:

{'北京': {'precision': 0.75, 'recall': 0.75, 'f1-score': 0.75, 'support': 4},

'上海': {'precision': 1.0, 'recall': 0.6666666666666666, 'f1-score': 0.8, 'support': 3},

'成都': {'precision': 0.5, 'recall': 0.6666666666666666, 'f1-score': 0.5714285714285715, 'support': 3},

'accuracy': 0.7,

'macro avg': {'precision': 0.75, 'recall': 0.6944444444444443, 'f1-score': 0.7071428571428572, 'support': 10},

'weighted avg': {'precision': 0.75, 'recall': 0.7, 'f1-score': 0.7114285714285715, 'support': 10}}

  使用confusion_matrix方法可以输出该多分类问题的混淆矩阵,代码如下:

from sklearn.metrics import confusion_matrix
y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']
print(confusion_matrix(y_true, y_pred, labels = ['北京', '上海', '成都']))

输出结果如下:

[[2 0 1]
[0 3 1]
[0 1 2]]

  为了将该混淆矩阵绘制成图片,可使用如下的Python代码:

# -*- coding: utf-8 -*-
# author: Jclian91
# place: Daxing Beijing
# time: 2019-11-14 21:52 from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import matplotlib as mpl # 支持中文字体显示, 使用于Mac系统
zhfont=mpl.font_manager.FontProperties(fname="/Library/Fonts/Songti.ttc") y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海'] classes = ['北京', '上海', '成都']
confusion = confusion_matrix(y_true, y_pred) # 绘制热度图
plt.imshow(confusion, cmap=plt.cm.Greens)
indices = range(len(confusion))
plt.xticks(indices, classes, fontproperties=zhfont)
plt.yticks(indices, classes, fontproperties=zhfont)
plt.colorbar()
plt.xlabel('y_pred')
plt.ylabel('y_true') # 显示数据
for first_index in range(len(confusion)):
for second_index in range(len(confusion[first_index])):
plt.text(first_index, second_index, confusion[first_index][second_index]) # 显示图片
plt.show()

生成的混淆矩阵图片如下:

  本次分享到此结束,感谢大家阅读,也感谢在北京大兴待的这段日子,当然还会再待一阵子~

利用sklearn对多分类的每个类别进行指标评价的更多相关文章

  1. 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  2. 利用Sklearn实现加州房产价格预测,学习运用机器学习的整个流程(包含很多细节注解)

    Chapter1_housing_price_predict .caret, .dropup > .btn > .caret { border-top-color: #000 !impor ...

  3. 利用sklearn实现k-means

    基于上面的一篇博客k-means利用sklearn实现k-means #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np ...

  4. 利用sklearn计算文本相似性

    利用sklearn计算文本相似性,并将文本之间的相似度矩阵保存到文件当中.这里提取文本TF-IDF特征值进行文本的相似性计算. #!/usr/bin/python # -*- coding: utf- ...

  5. sklearn CART决策树分类

    sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C ...

  6. OC分类(类目/类别) 和 类扩展 - 全解析

    OC分类(类目/类别) 和 类扩展 - 全解析   具体见: oschina -> MyDemo -> 011.FoundationLog-OC分类剖析 http://blog.csdn. ...

  7. sklearn特征选择和分类模型

    sklearn特征选择和分类模型 数据格式: 这里.原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式. s ...

  8. Flutter实战视频-移动电商-21.分类页_类别信息接口调试

    21.分类页_类别信息接口调试 先解决一个坑 取消上面的GridVIew的回弹效果.就是在拖这个gridview的时候有一个滚动的效果 physics: NeverScrollableScrollPh ...

  9. sklearn实现多分类逻辑回归

    sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改 ...

随机推荐

  1. Android性能优化总结

    合理的管理内存 节制地使用Service,尽量使用IntentService 避免在Bitmap上浪费内存,压缩图片处理 谨慎使用抽象编程 尽量避免会用依赖注入框架 使用ProGuard简化代码,好处 ...

  2. 【Java实例】使用Thumbnailator生成缩略图(缩放、旋转、裁剪、水印)

    1 需求 表哥需要给儿子报名考试,系统要求上传不超过30KB的图片,而现在的手机随手一拍就是几MB的,怎么弄一个才30KB的图片呢? 一个简单的办法是在电脑上把图片缩小,然后截屏小图片,但现在的电脑屏 ...

  3. [ch03-02] 交叉熵损失函数

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entrop ...

  4. 【Android - IPC】之ContentProvider简介

    1.Content Provider简介 Content Provider是Android中提供的一种专门用于不同应用之间进行数据共享的方式,从这一点来看,它天生就适合IPC(Inter-Proces ...

  5. 面试官:JVM锁优化都优化了啥?

    从JDK1.6开始,JVM对锁进行了各种优化,目的就是为了在线程间更高效的共享数据和解决互斥同步的问题.从锁优化的话题开始,可以引申出很多考点面试题,比如锁优化的技术.各优化技术的细节.CAS实现原理 ...

  6. IT网址 插件 系统 软件 网址收集!

    http://www.css88.com http://www.runoob.com/jquery/jquery-plugin-validate.html http://www.iteye.com/n ...

  7. Date、Calendar和GregorianCalendar的使用

    java.util 包提供了 Date 类来封装当前的日期和时间. Date 类提供两个构造函数来实例化 Date 对象. 第一个构造函数使用当前日期和时间来初始化对象. Date public st ...

  8. vue 常用的官网

    vue.js     https://cn.vuejs.org/ v-charts  https://v-charts.js.org/#/                    (图表,地图) web ...

  9. 自学PHP的第22天---ThinkPHP中的路由、ThinkPHP目录结构

    这一切的一切都得从“Hello world”说起!!! 有很多东西在thinkPHP的官方开发文档上其实都有讲到,我在这里只是想记录自己每天坚持学习PHP的情况,今天接触ThinkPHP的路由,路由这 ...

  10. git 使用详解(4)—— commit -a -m/diff --staged/rm/mv

    查看已暂存和未暂存的更新 实际上 git status的显示比较简单,仅仅是 列出了(修改过的.新创建的.已经暂存但未提交的)文件,如果要查看具体修改了什么地方,可以用git diff 命令.稍后我们 ...