转载:https://zhuanlan.zhihu.com/p/33075914 MobileNet V2 论文初读

转载:https://blog.csdn.net/wfei101/article/details/79334659  网络模型压缩和优化:MobileNet V2网络结构理解

转载: https://zhuanlan.zhihu.com/p/50045821 mobilenetv1和mobilenetv2的区别

MobileNetV2: Inverted Residuals and Linear Bottlenecks:连接:https://128.84.21.199/pdf/1801.04381.pdf

MobileNet v1中使用的Depthwise Separable Convolution是模型压缩的一个最为经典的策略,它是通过将跨通道的  卷积换成单通道的  卷积+跨通道的  卷积来达到此目的的。

MobileNet V2主要的改进有两点

1、Linear Bottlenecks。因为ReLU的在通道数较少的Feature Map上有非常严重信息损失问题,所以去掉了小维度输出层后面的非线性激活层ReLU,保留更多的特征信息,目的是为了保证模型的表达能力。

2、Inverted Residual block。该结构和传统residual block中维度先缩减再扩增正好相反,因此shotcut也就变成了连接的是维度缩减后的feature map。

相同点

  • 都采用 Depth-wise (DW) 卷积搭配 Point-wise (PW) 卷积的方式来提特征。这两个操作合起来也被称为 Depth-wise Separable Convolution,之前在 Xception 中被广泛使用。这么做的好处是理论上可以成倍的减少卷积层的时间复杂度和空间复杂度。由下式可知,因为卷积核的尺寸  通常远小于输出通道数 ,因此标准卷积的计算复杂度近似为 DW + PW 组合卷积的  倍。由于Depthwise卷积的每个通道Feature Map产生且仅产生一个与之对应的Feature Map,也就是说输出层的Feature Map的channel数量等于输入层的Feature map的数量。因此DepthwiseConv不需要控制输出层的Feature Map的数量,因此并没有num_filters 这个参数,这个参数是和输入特征的channels数相等。

standard Convolution运算量:3*3跨通道运算 C*(C*(K**2)*x),其中x为一个kernel核在一个一维的输入特征上运算需要滑动的次数,这里假设卷积核个数和输入通道数都是C;

 Depth-wise Separable Convolution运算量:单通道运算(C*(K**2)*x)+ 跨通道1*1卷积 C*(C*(1**2)*x),,其中x为一个kernel核在一个一维的输入特征上运算需要滑动的次数,这里假设卷积核个数和输入通道数都是C;

Depthwise卷积示意图(3个通道)

主要创新点

1,Inverted residuals:V2 在 DW 卷积之前新加了一个 1*1 大小PW 卷积。这么做的原因,是因为 DW 卷积由于本身的计算特性决定它自己没有改变通道数的能力,上一层给它多少通道,它就只能输出多少通道。所以如果上一层给的通道数本身很少的话,DW 也只能很委屈的在低维空间提特征,因此效果不够好。现在 V2 为了改善这个问题,给每个 DW 之前都配备了一个 PW,专门用来升维,定义升维系数 t(而在v2中这个值一般是介于  之间的数,在作者的实验中, ),这样不管输入通道数  是多是少,经过第一个 PW 升维之后,DW 都是在相对的更高维 (  ) 进行着辛勤工作的。主要也是为了提取更多的通道信息,得到更多的特征线信息。

2,Linear bottlenecks:V2 去掉了第二个 PW 的激活函数,意思就是bottleneck的输出不接非线性激活层。论文作者称其为 Linear Bottleneck。这么做的原因,是因为作者认为激活函数在高维空间能够有效的增加非线性,而在低维空间时则会破坏特征,不如线性的效果好。由于第二个 PW 的主要功能就是降维,因此按照上面的理论,降维之后就不宜再使用 ReLU6 了。

再看看MobileNetV2的block 与ResNet 的block:主要不同之处就在于,ResNet是:压缩”→“卷积提特征”→“扩张”,MobileNetV2则是Inverted residuals, 即:“扩张”→“卷积提特征”→ “压缩

具体mobilenetV2的宏观结构如下:t表示每个bottleneck的PW层的expand系数,也就是channels扩张系数,

c表示每个bottleneck的输出通道数,也就是每个bottleneck输出的PW的channels数,用于降维,

n表示有多少个bottleneck连接在一起,s表示第一个bottleneck的DW层的stride,表示下采样;

附上mobilenetv2的源码,可以通过netscope: https://ethereon.github.io/netscope/#/editor查看:

name: "MOBILENET_V2"
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size:
}
image_data_param {
source: "./train.txt"
batch_size:
shuffle: false
}
}
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size:
}
image_data_param {
source: "./valid.txt"
batch_size:
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
stride:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1/bn"
top: "conv1/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1/bn"
top: "conv1/bn"
}
layer {
name: "conv2_1/expand"
type: "Convolution"
bottom: "conv1/bn"
top: "conv2_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_1/expand/bn"
type: "BatchNorm"
bottom: "conv2_1/expand"
top: "conv2_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_1/expand/scale"
type: "Scale"
bottom: "conv2_1/expand/bn"
top: "conv2_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu2_1/expand"
type: "ReLU"
bottom: "conv2_1/expand/bn"
top: "conv2_1/expand/bn"
}
layer {
name: "conv2_1/dwise"
type: "Convolution"
bottom: "conv2_1/expand/bn"
top: "conv2_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv2_1/dwise/bn"
type: "BatchNorm"
bottom: "conv2_1/dwise"
top: "conv2_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_1/dwise/scale"
type: "Scale"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu2_1/dwise"
type: "ReLU"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/dwise/bn"
}
layer {
name: "conv2_1/linear"
type: "Convolution"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_1/linear/bn"
type: "BatchNorm"
bottom: "conv2_1/linear"
top: "conv2_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_1/linear/scale"
type: "Scale"
bottom: "conv2_1/linear/bn"
top: "conv2_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv2_2/expand"
type: "Convolution"
bottom: "conv2_1/linear/bn"
top: "conv2_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_2/expand/bn"
type: "BatchNorm"
bottom: "conv2_2/expand"
top: "conv2_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_2/expand/scale"
type: "Scale"
bottom: "conv2_2/expand/bn"
top: "conv2_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu2_2/expand"
type: "ReLU"
bottom: "conv2_2/expand/bn"
top: "conv2_2/expand/bn"
}
layer {
name: "conv2_2/dwise"
type: "Convolution"
bottom: "conv2_2/expand/bn"
top: "conv2_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
stride:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv2_2/dwise/bn"
type: "BatchNorm"
bottom: "conv2_2/dwise"
top: "conv2_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_2/dwise/scale"
type: "Scale"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu2_2/dwise"
type: "ReLU"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/dwise/bn"
}
layer {
name: "conv2_2/linear"
type: "Convolution"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_2/linear/bn"
type: "BatchNorm"
bottom: "conv2_2/linear"
top: "conv2_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_2/linear/scale"
type: "Scale"
bottom: "conv2_2/linear/bn"
top: "conv2_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv3_1/expand"
type: "Convolution"
bottom: "conv2_2/linear/bn"
top: "conv3_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_1/expand/bn"
type: "BatchNorm"
bottom: "conv3_1/expand"
top: "conv3_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_1/expand/scale"
type: "Scale"
bottom: "conv3_1/expand/bn"
top: "conv3_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu3_1/expand"
type: "ReLU"
bottom: "conv3_1/expand/bn"
top: "conv3_1/expand/bn"
}
layer {
name: "conv3_1/dwise"
type: "Convolution"
bottom: "conv3_1/expand/bn"
top: "conv3_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv3_1/dwise/bn"
type: "BatchNorm"
bottom: "conv3_1/dwise"
top: "conv3_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_1/dwise/scale"
type: "Scale"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu3_1/dwise"
type: "ReLU"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/dwise/bn"
}
layer {
name: "conv3_1/linear"
type: "Convolution"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_1/linear/bn"
type: "BatchNorm"
bottom: "conv3_1/linear"
top: "conv3_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_1/linear/scale"
type: "Scale"
bottom: "conv3_1/linear/bn"
top: "conv3_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_3_1"
type: "Eltwise"
bottom: "conv2_2/linear/bn"
bottom: "conv3_1/linear/bn"
top: "block_3_1"
}
layer {
name: "conv3_2/expand"
type: "Convolution"
bottom: "block_3_1"
top: "conv3_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_2/expand/bn"
type: "BatchNorm"
bottom: "conv3_2/expand"
top: "conv3_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_2/expand/scale"
type: "Scale"
bottom: "conv3_2/expand/bn"
top: "conv3_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu3_2/expand"
type: "ReLU"
bottom: "conv3_2/expand/bn"
top: "conv3_2/expand/bn"
}
layer {
name: "conv3_2/dwise"
type: "Convolution"
bottom: "conv3_2/expand/bn"
top: "conv3_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
stride:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv3_2/dwise/bn"
type: "BatchNorm"
bottom: "conv3_2/dwise"
top: "conv3_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_2/dwise/scale"
type: "Scale"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu3_2/dwise"
type: "ReLU"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/dwise/bn"
}
layer {
name: "conv3_2/linear"
type: "Convolution"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_2/linear/bn"
type: "BatchNorm"
bottom: "conv3_2/linear"
top: "conv3_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_2/linear/scale"
type: "Scale"
bottom: "conv3_2/linear/bn"
top: "conv3_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv4_1/expand"
type: "Convolution"
bottom: "conv3_2/linear/bn"
top: "conv4_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_1/expand/bn"
type: "BatchNorm"
bottom: "conv4_1/expand"
top: "conv4_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_1/expand/scale"
type: "Scale"
bottom: "conv4_1/expand/bn"
top: "conv4_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_1/expand"
type: "ReLU"
bottom: "conv4_1/expand/bn"
top: "conv4_1/expand/bn"
}
layer {
name: "conv4_1/dwise"
type: "Convolution"
bottom: "conv4_1/expand/bn"
top: "conv4_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_1/dwise/bn"
type: "BatchNorm"
bottom: "conv4_1/dwise"
top: "conv4_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_1/dwise/scale"
type: "Scale"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_1/dwise"
type: "ReLU"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/dwise/bn"
}
layer {
name: "conv4_1/linear"
type: "Convolution"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_1/linear/bn"
type: "BatchNorm"
bottom: "conv4_1/linear"
top: "conv4_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_1/linear/scale"
type: "Scale"
bottom: "conv4_1/linear/bn"
top: "conv4_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_1"
type: "Eltwise"
bottom: "conv3_2/linear/bn"
bottom: "conv4_1/linear/bn"
top: "block_4_1"
}
layer {
name: "conv4_2/expand"
type: "Convolution"
bottom: "block_4_1"
top: "conv4_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_2/expand/bn"
type: "BatchNorm"
bottom: "conv4_2/expand"
top: "conv4_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_2/expand/scale"
type: "Scale"
bottom: "conv4_2/expand/bn"
top: "conv4_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_2/expand"
type: "ReLU"
bottom: "conv4_2/expand/bn"
top: "conv4_2/expand/bn"
}
layer {
name: "conv4_2/dwise"
type: "Convolution"
bottom: "conv4_2/expand/bn"
top: "conv4_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_2/dwise/bn"
type: "BatchNorm"
bottom: "conv4_2/dwise"
top: "conv4_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_2/dwise/scale"
type: "Scale"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_2/dwise"
type: "ReLU"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/dwise/bn"
}
layer {
name: "conv4_2/linear"
type: "Convolution"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_2/linear/bn"
type: "BatchNorm"
bottom: "conv4_2/linear"
top: "conv4_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_2/linear/scale"
type: "Scale"
bottom: "conv4_2/linear/bn"
top: "conv4_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_2"
type: "Eltwise"
bottom: "block_4_1"
bottom: "conv4_2/linear/bn"
top: "block_4_2"
}
layer {
name: "conv4_3/expand"
type: "Convolution"
bottom: "block_4_2"
top: "conv4_3/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_3/expand/bn"
type: "BatchNorm"
bottom: "conv4_3/expand"
top: "conv4_3/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_3/expand/scale"
type: "Scale"
bottom: "conv4_3/expand/bn"
top: "conv4_3/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_3/expand"
type: "ReLU"
bottom: "conv4_3/expand/bn"
top: "conv4_3/expand/bn"
}
layer {
name: "conv4_3/dwise"
type: "Convolution"
bottom: "conv4_3/expand/bn"
top: "conv4_3/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_3/dwise/bn"
type: "BatchNorm"
bottom: "conv4_3/dwise"
top: "conv4_3/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_3/dwise/scale"
type: "Scale"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_3/dwise"
type: "ReLU"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/dwise/bn"
}
layer {
name: "conv4_3/linear"
type: "Convolution"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_3/linear/bn"
type: "BatchNorm"
bottom: "conv4_3/linear"
top: "conv4_3/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_3/linear/scale"
type: "Scale"
bottom: "conv4_3/linear/bn"
top: "conv4_3/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv4_4/expand"
type: "Convolution"
bottom: "conv4_3/linear/bn"
top: "conv4_4/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_4/expand/bn"
type: "BatchNorm"
bottom: "conv4_4/expand"
top: "conv4_4/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_4/expand/scale"
type: "Scale"
bottom: "conv4_4/expand/bn"
top: "conv4_4/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_4/expand"
type: "ReLU"
bottom: "conv4_4/expand/bn"
top: "conv4_4/expand/bn"
}
layer {
name: "conv4_4/dwise"
type: "Convolution"
bottom: "conv4_4/expand/bn"
top: "conv4_4/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_4/dwise/bn"
type: "BatchNorm"
bottom: "conv4_4/dwise"
top: "conv4_4/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_4/dwise/scale"
type: "Scale"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_4/dwise"
type: "ReLU"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/dwise/bn"
}
layer {
name: "conv4_4/linear"
type: "Convolution"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_4/linear/bn"
type: "BatchNorm"
bottom: "conv4_4/linear"
top: "conv4_4/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_4/linear/scale"
type: "Scale"
bottom: "conv4_4/linear/bn"
top: "conv4_4/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_4"
type: "Eltwise"
bottom: "conv4_3/linear/bn"
bottom: "conv4_4/linear/bn"
top: "block_4_4"
}
layer {
name: "conv4_5/expand"
type: "Convolution"
bottom: "block_4_4"
top: "conv4_5/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_5/expand/bn"
type: "BatchNorm"
bottom: "conv4_5/expand"
top: "conv4_5/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_5/expand/scale"
type: "Scale"
bottom: "conv4_5/expand/bn"
top: "conv4_5/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_5/expand"
type: "ReLU"
bottom: "conv4_5/expand/bn"
top: "conv4_5/expand/bn"
}
layer {
name: "conv4_5/dwise"
type: "Convolution"
bottom: "conv4_5/expand/bn"
top: "conv4_5/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_5/dwise/bn"
type: "BatchNorm"
bottom: "conv4_5/dwise"
top: "conv4_5/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_5/dwise/scale"
type: "Scale"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_5/dwise"
type: "ReLU"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/dwise/bn"
}
layer {
name: "conv4_5/linear"
type: "Convolution"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_5/linear/bn"
type: "BatchNorm"
bottom: "conv4_5/linear"
top: "conv4_5/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_5/linear/scale"
type: "Scale"
bottom: "conv4_5/linear/bn"
top: "conv4_5/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_5"
type: "Eltwise"
bottom: "block_4_4"
bottom: "conv4_5/linear/bn"
top: "block_4_5"
}
layer {
name: "conv4_6/expand"
type: "Convolution"
bottom: "block_4_5"
top: "conv4_6/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_6/expand/bn"
type: "BatchNorm"
bottom: "conv4_6/expand"
top: "conv4_6/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_6/expand/scale"
type: "Scale"
bottom: "conv4_6/expand/bn"
top: "conv4_6/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_6/expand"
type: "ReLU"
bottom: "conv4_6/expand/bn"
top: "conv4_6/expand/bn"
}
layer {
name: "conv4_6/dwise"
type: "Convolution"
bottom: "conv4_6/expand/bn"
top: "conv4_6/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_6/dwise/bn"
type: "BatchNorm"
bottom: "conv4_6/dwise"
top: "conv4_6/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_6/dwise/scale"
type: "Scale"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_6/dwise"
type: "ReLU"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/dwise/bn"
}
layer {
name: "conv4_6/linear"
type: "Convolution"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_6/linear/bn"
type: "BatchNorm"
bottom: "conv4_6/linear"
top: "conv4_6/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_6/linear/scale"
type: "Scale"
bottom: "conv4_6/linear/bn"
top: "conv4_6/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_6"
type: "Eltwise"
bottom: "block_4_5"
bottom: "conv4_6/linear/bn"
top: "block_4_6"
}
layer {
name: "conv4_7/expand"
type: "Convolution"
bottom: "block_4_6"
top: "conv4_7/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_7/expand/bn"
type: "BatchNorm"
bottom: "conv4_7/expand"
top: "conv4_7/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_7/expand/scale"
type: "Scale"
bottom: "conv4_7/expand/bn"
top: "conv4_7/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_7/expand"
type: "ReLU"
bottom: "conv4_7/expand/bn"
top: "conv4_7/expand/bn"
}
layer {
name: "conv4_7/dwise"
type: "Convolution"
bottom: "conv4_7/expand/bn"
top: "conv4_7/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
stride:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_7/dwise/bn"
type: "BatchNorm"
bottom: "conv4_7/dwise"
top: "conv4_7/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_7/dwise/scale"
type: "Scale"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_7/dwise"
type: "ReLU"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/dwise/bn"
}
layer {
name: "conv4_7/linear"
type: "Convolution"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_7/linear/bn"
type: "BatchNorm"
bottom: "conv4_7/linear"
top: "conv4_7/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_7/linear/scale"
type: "Scale"
bottom: "conv4_7/linear/bn"
top: "conv4_7/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv5_1/expand"
type: "Convolution"
bottom: "conv4_7/linear/bn"
top: "conv5_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_1/expand/bn"
type: "BatchNorm"
bottom: "conv5_1/expand"
top: "conv5_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_1/expand/scale"
type: "Scale"
bottom: "conv5_1/expand/bn"
top: "conv5_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu5_1/expand"
type: "ReLU"
bottom: "conv5_1/expand/bn"
top: "conv5_1/expand/bn"
}
layer {
name: "conv5_1/dwise"
type: "Convolution"
bottom: "conv5_1/expand/bn"
top: "conv5_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_1/dwise/bn"
type: "BatchNorm"
bottom: "conv5_1/dwise"
top: "conv5_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_1/dwise/scale"
type: "Scale"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu5_1/dwise"
type: "ReLU"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/dwise/bn"
}
layer {
name: "conv5_1/linear"
type: "Convolution"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_1/linear/bn"
type: "BatchNorm"
bottom: "conv5_1/linear"
top: "conv5_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_1/linear/scale"
type: "Scale"
bottom: "conv5_1/linear/bn"
top: "conv5_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_5_1"
type: "Eltwise"
bottom: "conv4_7/linear/bn"
bottom: "conv5_1/linear/bn"
top: "block_5_1"
}
layer {
name: "conv5_2/expand"
type: "Convolution"
bottom: "block_5_1"
top: "conv5_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_2/expand/bn"
type: "BatchNorm"
bottom: "conv5_2/expand"
top: "conv5_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_2/expand/scale"
type: "Scale"
bottom: "conv5_2/expand/bn"
top: "conv5_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu5_2/expand"
type: "ReLU"
bottom: "conv5_2/expand/bn"
top: "conv5_2/expand/bn"
}
layer {
name: "conv5_2/dwise"
type: "Convolution"
bottom: "conv5_2/expand/bn"
top: "conv5_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_2/dwise/bn"
type: "BatchNorm"
bottom: "conv5_2/dwise"
top: "conv5_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_2/dwise/scale"
type: "Scale"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu5_2/dwise"
type: "ReLU"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/dwise/bn"
}
layer {
name: "conv5_2/linear"
type: "Convolution"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_2/linear/bn"
type: "BatchNorm"
bottom: "conv5_2/linear"
top: "conv5_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_2/linear/scale"
type: "Scale"
bottom: "conv5_2/linear/bn"
top: "conv5_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_5_2"
type: "Eltwise"
bottom: "block_5_1"
bottom: "conv5_2/linear/bn"
top: "block_5_2"
}
layer {
name: "conv5_3/expand"
type: "Convolution"
bottom: "block_5_2"
top: "conv5_3/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_3/expand/bn"
type: "BatchNorm"
bottom: "conv5_3/expand"
top: "conv5_3/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_3/expand/scale"
type: "Scale"
bottom: "conv5_3/expand/bn"
top: "conv5_3/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu5_3/expand"
type: "ReLU"
bottom: "conv5_3/expand/bn"
top: "conv5_3/expand/bn"
}
layer {
name: "conv5_3/dwise"
type: "Convolution"
bottom: "conv5_3/expand/bn"
top: "conv5_3/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
stride:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_3/dwise/bn"
type: "BatchNorm"
bottom: "conv5_3/dwise"
top: "conv5_3/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_3/dwise/scale"
type: "Scale"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu5_3/dwise"
type: "ReLU"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/dwise/bn"
}
layer {
name: "conv5_3/linear"
type: "Convolution"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_3/linear/bn"
type: "BatchNorm"
bottom: "conv5_3/linear"
top: "conv5_3/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_3/linear/scale"
type: "Scale"
bottom: "conv5_3/linear/bn"
top: "conv5_3/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv6_1/expand"
type: "Convolution"
bottom: "conv5_3/linear/bn"
top: "conv6_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_1/expand/bn"
type: "BatchNorm"
bottom: "conv6_1/expand"
top: "conv6_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_1/expand/scale"
type: "Scale"
bottom: "conv6_1/expand/bn"
top: "conv6_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu6_1/expand"
type: "ReLU"
bottom: "conv6_1/expand/bn"
top: "conv6_1/expand/bn"
}
layer {
name: "conv6_1/dwise"
type: "Convolution"
bottom: "conv6_1/expand/bn"
top: "conv6_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_1/dwise/bn"
type: "BatchNorm"
bottom: "conv6_1/dwise"
top: "conv6_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_1/dwise/scale"
type: "Scale"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu6_1/dwise"
type: "ReLU"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/dwise/bn"
}
layer {
name: "conv6_1/linear"
type: "Convolution"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_1/linear/bn"
type: "BatchNorm"
bottom: "conv6_1/linear"
top: "conv6_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_1/linear/scale"
type: "Scale"
bottom: "conv6_1/linear/bn"
top: "conv6_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_6_1"
type: "Eltwise"
bottom: "conv5_3/linear/bn"
bottom: "conv6_1/linear/bn"
top: "block_6_1"
}
layer {
name: "conv6_2/expand"
type: "Convolution"
bottom: "block_6_1"
top: "conv6_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_2/expand/bn"
type: "BatchNorm"
bottom: "conv6_2/expand"
top: "conv6_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_2/expand/scale"
type: "Scale"
bottom: "conv6_2/expand/bn"
top: "conv6_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu6_2/expand"
type: "ReLU"
bottom: "conv6_2/expand/bn"
top: "conv6_2/expand/bn"
}
layer {
name: "conv6_2/dwise"
type: "Convolution"
bottom: "conv6_2/expand/bn"
top: "conv6_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_2/dwise/bn"
type: "BatchNorm"
bottom: "conv6_2/dwise"
top: "conv6_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_2/dwise/scale"
type: "Scale"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu6_2/dwise"
type: "ReLU"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/dwise/bn"
}
layer {
name: "conv6_2/linear"
type: "Convolution"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_2/linear/bn"
type: "BatchNorm"
bottom: "conv6_2/linear"
top: "conv6_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_2/linear/scale"
type: "Scale"
bottom: "conv6_2/linear/bn"
top: "conv6_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_6_2"
type: "Eltwise"
bottom: "block_6_1"
bottom: "conv6_2/linear/bn"
top: "block_6_2"
}
layer {
name: "conv6_3/expand"
type: "Convolution"
bottom: "block_6_2"
top: "conv6_3/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_3/expand/bn"
type: "BatchNorm"
bottom: "conv6_3/expand"
top: "conv6_3/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_3/expand/scale"
type: "Scale"
bottom: "conv6_3/expand/bn"
top: "conv6_3/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu6_3/expand"
type: "ReLU"
bottom: "conv6_3/expand/bn"
top: "conv6_3/expand/bn"
}
layer {
name: "conv6_3/dwise"
type: "Convolution"
bottom: "conv6_3/expand/bn"
top: "conv6_3/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_3/dwise/bn"
type: "BatchNorm"
bottom: "conv6_3/dwise"
top: "conv6_3/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_3/dwise/scale"
type: "Scale"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu6_3/dwise"
type: "ReLU"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/dwise/bn"
}
layer {
name: "conv6_3/linear"
type: "Convolution"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_3/linear/bn"
type: "BatchNorm"
bottom: "conv6_3/linear"
top: "conv6_3/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_3/linear/scale"
type: "Scale"
bottom: "conv6_3/linear/bn"
top: "conv6_3/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv6_4"
type: "Convolution"
bottom: "conv6_3/linear/bn"
top: "conv6_4"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_4/bn"
type: "BatchNorm"
bottom: "conv6_4"
top: "conv6_4/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_4/scale"
type: "Scale"
bottom: "conv6_4/bn"
top: "conv6_4/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu6_4"
type: "ReLU"
bottom: "conv6_4/bn"
top: "conv6_4/bn"
}
layer {
name: "pool6"
type: "Pooling"
bottom: "conv6_4/bn"
top: "pool6"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "food_fc7"
type: "Convolution"
bottom: "pool6"
top: "fc7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
#num_output:
num_output:
kernel_size:
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc7"
bottom: "label"
top: "loss"
}
layer {
name: "top1/acc"
type: "Accuracy"
bottom: "fc7"
bottom: "label"
top: "top1/acc"
include {
phase: TEST
}
}
layer {
name: "top5/acc"
type: "Accuracy"
bottom: "fc7"
bottom: "label"
top: "top5/acc"
include {
phase: TEST
}
accuracy_param {
top_k:
}
}

MobileNet V2深入理解的更多相关文章

  1. 轻量化模型:MobileNet v2

    MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型. 关于Mobile ...

  2. mobile-net v2 学习记录。我是菜鸡!

    声明:只是自己写博客总结下,不保证正确性,我的理解很可能是错的.. 首先,mobile net V1的主要特点是: 1.深度可分离卷积.用depth-wise convolution来分层过滤特征,再 ...

  3. YOLO V2论文理解

    概述 YOLO(You Only Look Once: Unified, Real-Time Object Detection)从v1版本进化到了v2版本,作者在darknet主页先行一步放出源代码, ...

  4. MobileNet V2

    https://zhuanlan.zhihu.com/p/33075914 http://blog.csdn.net/u011995719/article/details/79135818 https ...

  5. 卷积神经网络学习笔记——轻量化网络MobileNet系列(V1,V2,V3)

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和Mo ...

  6. 从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2

    from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule ...

  7. 深度学习笔记(十一)网络 Inception, Xception, MobileNet, ShuffeNet, ResNeXt, SqueezeNet, EfficientNet, MixConv

    1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet, ...

  8. MobileNet系列

    最近一段时间,重新研读了谷歌的mobilenet系列,对该系列有新的认识. 1.MobileNet V1 这篇论文是谷歌在2017年提出了,专注于移动端或者嵌入式设备中的轻量级CNN网络.该论文最大的 ...

  9. 轻量级卷积神经网络——MobileNet

    谷歌论文题目: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 其他参考: CNN ...

随机推荐

  1. “高可用性”(High Availability)??

    “高可用性”(High Availability)通常来描述一个系统经过专门的设计,从而减少停工时间,而保持其服务的高度可用性. 计算机的高可用性 计算机系统的可用性用平均无故障时间(MTTF)来度量 ...

  2. OpenGL ES on iOS --- 统一变量(Uniform)和统一变量块(UBO)

    简介 Uniform是一种从CPU中的应用向GPU中的着色器发送数据的方式,但uniform和顶点属性有些不同. 首先,uniform是全局的(Global).全局意味着uniform变量必须在每个着 ...

  3. tcpdump和windump

    Tcpdump简介 tcpdump命令是一款sniffer工具,它可以打印所有经过网络接口的数据包的头信息, tcpdump,就是:dump the traffic on a network,根据使用 ...

  4. 【转】ufw 端口

    1.扫描端口 用ubuntu自带的网络工具中的端口扫描不够强大,扫描结果可能不全,推荐用nmap,黑客常用的端口扫描利器!安装方法:sudo apt-get install nmap ,想扫描端口nm ...

  5. python实现pow函数(求n次幂,求n次方)

    目录 类型一:求n次幂 类型二:求n开方 类型一:求n次幂 实现 pow(x, n),即计算 x 的 n 次幂函数.其中n为整数.pow函数的实现--leetcode 解法1:暴力法 不是常规意义上的 ...

  6. 2018 ICPC上海大都会赛重现赛 D Thinking-Bear magic (几何)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 D Thinking-Bear magic (几何) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

  7. Python 字节码bytecode

    字节码bytecode python把源码文件编译成字节码文件,存放在__pycahe子目录内,用.pyc结尾.之后如果不再修改源码文件,运行时则使用*.pyc文件编译成机器码,这样不但运行速度快,而 ...

  8. springboot @async 无效问题

    在@SpringBootApplication启动类 添加注解@EnableAsync 异步方法使用注解@Async ,返回值为void或者Future 切记一点 ,异步方法和调用方法一定要写在不同的 ...

  9. MVC路由规则进一步了解

    本周由于工作需要,接触了PetaPoco(一个小型的ORM-框架)和ExtJS,这个项目框架是别人写好的,用的是MVC,我写的MVC程序一般控制器和视图都是在一个类库下面的,但是作者是把MVC中的控制 ...

  10. js 获取窗口大小

     //获得窗口大小         function findDimensions() //函数:获取尺寸         {             var point = {};          ...