BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers
Zap
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
Input
第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个
正整数,分别为a,b,d。(1<=d<=a,b<=50000)
Output
对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。
Sample Input
2
4 5 2
6 4 3
Sample Output
3
2
//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(
6,3),(3,3)。
题解
原问题等价于求有多少对二元组\((x,y)\)满足\(x\le a/k,y\le b/k\)且\(x,y\)互质。
设\(D(a,b,k)\)表示满足\(x \le a,y \le b\)且\(k|\gcd(x,y)\)的二元组有多少对,显然\(D(a,b,k)=\lfloor a/k \rfloor\lfloor b/k \rfloor\)。
设\(F(a,b)\)表示\(x\le a,y\le b\)且\(x,y\)互质的二元组有多少对,由容斥原理可得:
\]
上式表示没有限制的是\(D(a,b,1)\),减去公因数至少有一个质因子的\(D(a,b,p)\),加上减重复了的。以此类推,\(D(a,b,i)\)的系数恰好就是Mobius函数。
另外\(D(a,b,i)\)在\(\forall i \in [x,\min(\lfloor a/\lfloor a/x \rfloor \rfloor,\lfloor b/\lfloor b/x \rfloor \rfloor)]\)的值都相等,可以整除分块。那么预处理出Mobius函数的前缀和,就可直接累加这一段的答案。时间复杂度\(O(N \log \log N +N( \sqrt{a}+\sqrt{b}))\)。
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;
rg char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') w=-1;
ch=getchar();
}
while(isdigit(ch))
data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x){
return x=read<T>();
}
typedef long long ll;
co int N=5e4+1;
int miu[N];
bool v[N];
void Zap(){
int a,b,k,ans=0;
read(a),read(b),read(k);
a/=k,b/=k;
if(a>b) std::swap(a,b);
for(int x=1,gx;x<=a;x=gx+1){
gx=std::min(a/(a/x),b/(b/x));
ans+=(miu[gx]-miu[x-1])*(a/x)*(b/x);
}
printf("%d\n",ans);
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
for(int i=1;i<N;++i) miu[i]=1,v[i]=0;
for(int i=2;i<N;++i){
if(v[i]) continue;
miu[i]=-1;
for(int j=2*i;j<N;j+=i){
v[j]=1;
if(j/i%i==0) miu[j]=0;
else miu[j]*=-1;
}
}
for(int i=1;i<N;++i) miu[i]+=miu[i-1];
int n=read<int>();
while(n--) Zap();
return 0;
}
再分析
重温了一遍洛谷网课上AmberFrame的ppt。
=\sum_{x=1}^{\lfloor a/k \rfloor} \sum_{y=1}^{\lfloor b/k \rfloor} [\gcd(x,y)=1] \\
=\sum_{x=1}^{\lfloor a/k \rfloor} \sum_{y=1}^{\lfloor b/k \rfloor} \sum_{d|x \wedge d|y} \mu(d) \\
=\sum_{d=1}^{\lfloor a/k \rfloor} \lfloor \frac{a}{kd} \rfloor \lfloor \frac{b}{kd} \rfloor
\]
Devu and Flowers
Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.
Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7).
Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.
Input
The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).
The second line contains n space-separated integers f1, f2, … fn (0 ≤ fi ≤ 1012).
Output
Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).
Sample test(s)
input
2 3
1 3
1
2
2 3
1 3
output
2
1
2
input
2 4
2 2
1
2
2 4
2 2
output
1
1
1
input
3 5
1 3 2
1
2
3 5
1 3 2
output
3
1
3
Note
Sample 1. There are two ways of selecting 3 flowers: {1, 2} and {0, 3}.
Sample 2. There is only one way of selecting 4 flowers: {2, 2}.
Sample 3. There are three ways of selecting 5 flowers: {1, 2, 2}, {0, 3, 2}, and {1, 3, 1}.
分析
多重集组合问题。根据结论,答案为
\]
由于N很小,所以直接枚举子集即可。算组合数的时候用for循环算。时间复杂度\(O(2^N N)\)
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;
rg char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') w=-1;
ch=getchar();
}
while(isdigit(ch))
data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x){
return x=read<T>();
}
typedef long long ll;
co int mod=1e9+7;
ll a[22],m,ans=0;
int inv[22],n;
int power(int a,int b){
int c=1;
for(;b;b>>=1){
if(b&1) c=(ll)c*a%mod;
a=(ll)a*a%mod;
}
return c;
}
int C(ll y,int x){
if(y<0||x<0||y<x) return 0;
y%=mod;
if(y==0||x==0) return 1;
int ans=1;
for(int i=0;i<x;++i)
ans=(ll)ans*(y-i)%mod;
for(int i=1;i<=x;++i)
ans=(ll)ans*inv[i]%mod;
return ans;
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
for(int i=1;i<=20;++i) inv[i]=power(i,mod-2);
read(n),read(m);
for(int i=0;i<n;++i) read(a[i]);
for(int x=0;x<1<<n;++x){
ll t=n+m;
int p=0;
for(int i=0;i<n;++i)
if(x>>i&1) ++p,t-=a[i];
t-=p+1;
if(p&1) ans=(ans-C(t,n-1))%mod;
else ans=(ans+C(t,n-1))%mod;
}
printf("%lld\n",(ans+mod)%mod);
return 0;
}
BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers的更多相关文章
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- CF451E Devu and Flowers 解题报告
CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...
- CF451E Devu and Flowers(容斥)
CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- CF451E Devu and Flowers(组合数)
题目描述 Devu想用花去装饰他的花园,他已经购买了n个箱子,第i个箱子有fi朵花,在同一个的箱子里的所有花是同种颜色的(所以它们没有任何其他特征).另外,不存在两个箱子中的花是相同颜色的. 现在De ...
- 【莫比乌斯反演】BZOJ1101 [POI2007]zap
Description 回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b.T, a, b<=4e5. Solution 显然对于gcd=d的,应该把a/d b/d,然 ...
随机推荐
- layui开关switch显示不全问题
先看效果: 开关显示不全,高度也不对称. 解决: 在所用到的html/jsp中自己加css .layui-form-switch { width: 52px; height: 23px; } 再看效果 ...
- mysql 转换NULL数据方法
mysql 转换NULL数据方法<pre>SELECT info1,info2, IFNULL(info3,0) as info3 FROM `info1`;</pre>< ...
- 史上最浅显易懂的RxJava入门教程
RxJava是一个神奇的框架,用法很简单,但内部实现有点复杂,代码逻辑有点绕.我读源码时,确实有点似懂非懂的感觉.网上关于RxJava源码分析的文章,源码贴了一大堆,代码逻辑绕来绕去的,让人看得云里雾 ...
- htm5 css学习笔记整理
点击链接后退页面: <a href="javascript:history.go(-1)">回到上一个网页</a> ——修改placeholder提示的样式 ...
- LeetCode 198. 打家劫舍(House Robber) 5
198. 打家劫舍 198. House Robber 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两 ...
- Tomcat中不能通过访问自己IP,但可以通过localhost/127.0.0.1访问
一.问题如下:局域网内,自己机器部署了一个tomcat应用,在本机上可以通过如下方式访问引用. http://localhost:8080/xxxx http://127.0.0.1:8080/xx ...
- 11 模块、模块的搜索顺序、__file__内置属性、__name__属性
模块的概念 一个python文件就是一个模块. 模块名同时也是一个标识符,需要符合标识符的命名规则. 在模块中定义的全局变量.函数.类 都是个外界提供的直接使用的工具. 模块就好比工具包,要想使用一个 ...
- 15. Scala并发编程模型Akka
15.1 Akka介绍 1) Akka是Java虚拟机JVM平台上构建高并发.分布式和容错应用的工具包和运行时,可以理解成Akka是编写并发程序的框架 2) Akka用Scala语言写成,同时提供了S ...
- Scratch编程:初识Scratch及编程工具安装(一)
“ Scratch是一款由美国麻省理工学院(MIT)设计开发的少儿编程工具.” Scratch采用可视化.模块化的编程方式,非常适合青少年作为初次接触编程的工具和语言来学习,进而用其编写充满趣味的小程 ...
- Vue使用指南(三)
组件 '''1.根组件:new Vue()创建的组件,一般不明确自身的模板,模板就采用挂载点2.局部组件: local_component = {}2.全局组件: Vue.component({})' ...