题目描述:

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

思路解析:

动态规划

假设n个节点存在

令G(n)表示从1到n可以形成二叉排序树个数

令f(i)为以i为根的二叉搜索树的个数

即有:G(n) = f(1) + f(2) + f(3) + f(4) + ... + f(n)

n为根节点,当i为根节点时,其左子树节点个数为[1,2,3,...,i-1],右子树节点个数为[i+1,i+2,...n],所以当i为根节点时,其左子树节点个数为i-1个,右子树节点为n-i,即f(i) = G(i-1)*G(n-i),

上面两式可得:G(n) = G(0)*G(n-1)+G(1)*(n-2)+...+G(n-1)*G(0)

代码实现:

class Solution {
public int numTrees(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 0; j < i; j++) {
dp[i] += dp[j] * dp[i - j - 1];
}
}
return dp[n];
}
}

空间复杂度:O(N

Leetcode题目96.不同的二叉搜索树(动态规划-中等)的更多相关文章

  1. Leetcode:96. 不同的二叉搜索树

    Leetcode:96. 不同的二叉搜索树 Leetcode:96. 不同的二叉搜索树 题目在链接中,点进去看看吧! 先介绍一个名词:卡特兰数 卡特兰数 卡特兰数Cn满足以下递推关系: \[ C_{n ...

  2. Java实现 LeetCode 96 不同的二叉搜索树

    96. 不同的二叉搜索树 给定一个整数 n,求以 1 - n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 ...

  3. C# leetcode 之 096 不同的二叉搜索树

    C# leetcode 之 096 不同的二叉搜索树 题目描述 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 二叉搜索树定义 左子树上所有节点的值小于根节点, 右子树上左右 ...

  4. LeetCode 95 | 构造出所有二叉搜索树

    今天是LeetCode专题第61篇文章,我们一起来看的是LeetCode95题,Unique Binary Search Trees II(不同的二叉搜索树II). 这道题的官方难度是Medium,点 ...

  5. Leetcode 96. 不同的二叉搜索树

    题目链接 https://leetcode.com/problems/unique-binary-search-trees/description/ 题目描述 给定一个整数 n,求以 1 ... n ...

  6. [LeetCode]96. 不同的二叉搜索树(DP,卡特兰数)

    题目 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ ...

  7. LeetCode 96——不同的二叉搜索树

    1. 题目 2. 解答 以 \(1, 2, \cdots, n\) 构建二叉搜索树,其中,任意数字都可以作为根节点来构建二叉搜索树.当我们将某一个数字作为根节点后,其左边数据将构建为左子树,右边数据将 ...

  8. LeetCode 96. 不同的二叉搜索树(Unique Binary Search Trees )

    题目描述 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 输出: 解释: 给定 n = , 一共有 种不同结构的二叉搜索树: \ / / / \ \ / / ...

  9. [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

随机推荐

  1. android-studio-ide 安装到运行第一个helloword,坑记录

    1: 安装是提示  机器虚拟化问题,系统如开启了Hyper-V,必须关闭服务 2:安装完后,建立第一个项目,gradle build 一直转圈,最后报错 Gradle project sync fai ...

  2. 【QT 学习笔记】 一、 VS2015+ QT环境安装

    1.   安装    qt-opensource-windows-x86-msvc2015_64-5.6.0.exe   (根据自己的VS版本来安装) 下载地址 http://download.qt. ...

  3. 二元变量图形的pandas方法

    数据加载: 1.散点图 上图使用下采样的方法选取了100个样本点,因为把所有的数据加载进来太多了. 2.Hexplot图 上图是一个散点图再加上热力标注的形式,可以更准确的帮助我们看出数据集中在哪些区 ...

  4. echo打印换行

    shell环境中,echo是常用的数据命令,但有的时候,想通过“\n”使输出换行却换不了,这个时候需要增加-e选项: $ echo "Hellow.\nHey man~" Hell ...

  5. ARMA(p,q)模型数据的产生

    一.功能 产生自回归滑动平均模型\(ARMA(p,q)\)的数据. 二.方法简介 自回归滑动平均模型\(ARMA(p,q)\)为 \[ x(n)+\sum_{i=1}^{p}a_{i}x(n-i)=\ ...

  6. Maven的下载及安装

    版权申明:本文为博主原创文章,欢迎大家转载.转载请声明转载处为:https://www.cnblogs.com/qxcxy-silence/p/10808321.html 1.下载Maven; 1). ...

  7. 第一章 Django之MVC模式(2)

    让我们来研究一个简单的例子,通过该实例,你可以分辨出,通过 Web 框架来实现的功能与之前的方式有何不同.下面就是通过使用 Django 来完成以上功能的例子: # models.py (the da ...

  8. Build with runtime packages

    编译问题:为什么我去掉Build with runtime packages,编译没问题??? 如果不去掉,就有错误:[Linker Error] Unresolved external 'TXNet ...

  9. delphi Tidhttp 发送json格式报文

    type TwmsThreadpostJson = class(TThread) private Furl: string; Fpostcmd: string; FResult: string; FB ...

  10. Kinect 深度测量原理

    和其他摄像机一样,近红外摄像机也有视场.Kinect摄像机的视野是有限的,如下图所示: 如图,红外摄像机的视场是金字塔形状的.离摄像机远的物体比近的物体拥有更大的视场横截面积.这意味着影像的高度和宽度 ...