题意

题解

求路径上的割点。

然后就直接圆方树上差分

CODE

#include <bits/stdc++.h>
using namespace std;
inline void rd(int &x) {
char ch; for(;!isdigit(ch=getchar()););
for(x=ch-'0';isdigit(ch=getchar());)x=x*10+ch-'0';
}
const int MAXN = 100005;
const int MAXM = 200005;
int n, m, q; int fir[MAXN], to[MAXM<<1], nxt[MAXM<<1], cnt = 1;
inline void link(int u, int v) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt;
to[++cnt] = u; nxt[cnt] = fir[v]; fir[v] = cnt;
} int dfn[MAXN], low[MAXN], tmr, stk[MAXN], top, tot; vector<int>G[MAXN<<1]; void tarjan(int u, int ff) {
stk[++top] = u;
low[u] = dfn[u] = ++tmr;
for(int i = fir[u], v; i; i = nxt[i])
if((i^1) != ff) {
if(!dfn[v=to[i]]) {
tarjan(v, i);
low[u] = min(low[u], low[v]);
if(low[v] >= dfn[u]) {
++tot;
do G[tot].push_back(stk[top]), G[stk[top]].push_back(tot);
while(stk[top--] != v);
G[tot].push_back(u), G[u].push_back(tot);
}
}
else low[u] = min(low[u], dfn[v]);
}
}
int dep[MAXN<<1], sz[MAXN<<1], tp[MAXN<<1], son[MAXN<<1], fa[MAXN<<1];
void dfs1(int u, int ff) {
dep[u] = dep[fa[u]=ff] + (sz[u] = 1);
for(int i = G[u].size()-1, v; i >= 0; --i)
if((v=G[u][i]) != ff) {
dfs1(v, u), sz[u] += sz[v];
if(sz[v] > sz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int Tp) {
tp[u] = Tp;
if(son[u]) dfs2(son[u], Tp);
for(int i = G[u].size()-1, v; i >= 0; --i)
if((v=G[u][i]) != fa[u] && v != son[u])
dfs2(v, v);
}
inline int lca(int u, int v) {
while(tp[u] != tp[v]) {
if(dep[tp[u]] > dep[tp[v]]) u = fa[tp[u]];
else v = fa[tp[v]];
}
return dep[u] < dep[v] ? u : v;
}
int f[MAXN<<1];
bool vis[MAXN<<1];
int dfs(int u) {
if(vis[u]) return f[u]; vis[u] = 1;
for(int i = G[u].size()-1, v; i >= 0; --i)
if((v=G[u][i]) != fa[u])
f[u] += dfs(v);
return f[u];
}
int main() {
rd(n), rd(m), rd(q); tot = n;
for(int i = 1, u, v; i <= m; ++i) rd(u), rd(v), link(u, v);
for(int i = 1; i <= n; ++i) if(!dfn[i]) tarjan(i, 0), --top;
dfs1(1, 0), dfs2(1, 1);
for(int i = 1, u, v, Lca; i <= q; ++i) {
rd(u), rd(v);
Lca = lca(u, v);
++f[u], ++f[v], --f[Lca], --f[fa[Lca]];
}
for(int i = 1; i <= n; ++i) printf("%d\n", dfs(i));
}

附上圆方树学习链接:

租酥雨的博客

YoungNeal的博客

BZOJ3331 压力 (圆方树+树上差分)的更多相关文章

  1. BZOJ3331 [BeiJing2013]压力[圆方树+树上差分]

    圆方树新技能get.具体笔记见图连通性问题学习笔记. 这题求无向图的必经点,这个是一个固定套路:首先,一张连通的无向图中,每对点双和点双之间是以一个且仅一个割点连接起来的(如果超过一个就不能是割点了) ...

  2. bzoj3331 压力(圆方树)

    题目链接 圆方树 圆方树就是对于联通无向图中的每一个点双新建一个方点,与点双中的每个点连一条边,然后将原来的边删去.将原来的点看作圆点,新建的点看作方点.所以叫做圆方树. 性质 1.圆方树肯定是棵树( ...

  3. 【题解】Uoj#30 Tourist(广义圆方树+树上全家桶)

    [题解]Uoj#30 Tourist(广义圆方树+树上全家桶) 名字听起来很霸气其实算法很简单.... 仙人掌上的普通圆方树是普及题,但是广义圆方树虽然很直观但是有很多地方值得深思 说一下算法的流程: ...

  4. BZOJ 压力 tarjan 点双联通分量+树上差分+圆方树

    题意 如今,路由器和交换机构建起了互联网的骨架.处在互联网的骨干位置的核心路由器典型的要处理100Gbit/s的网络流量. 他们每天都生活在巨大的压力之下.小强建立了一个模型.这世界上有N个网络设备, ...

  5. Codechef Sad Pairs——圆方树+虚树+树上差分

    SADPAIRS 删点不连通,点双,圆方树 非割点:没有影响 割点:子树DP一下 有不同颜色,所以建立虚树 在圆方树上dfs时候 如果当前点是割点 1.统计当前颜色虚树上的不连通点对,树形DP即可 2 ...

  6. 仙人掌 && 圆方树 && 虚树 总结

    仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...

  7. Note -「圆方树」学习笔记

    目录 圆方树的定义 圆方树的构造 实现 细节 圆方树的运用 「BZOJ 3331」压力 「洛谷 P4320」道路相遇 「APIO 2018」「洛谷 P4630」铁人两项 「CF 487E」Touris ...

  8. 仙人掌&圆方树

    仙人掌&圆方树 Tags:图论 [x] [luogu4320]道路相遇 https://www.luogu.org/problemnew/show/P4320 [ ] [SDOI2018]战略 ...

  9. 圆方树简介(UOJ30:CF Round #278 Tourists)

    我写这篇博客的原因 证明我也是学过圆方树的 顺便存存代码 前置技能 双联通分量:点双 然后就没辣 圆方树 建立 新建一个图 定义原图中的所有点为圆点 对于每个点双联通分量(只有两个点的也算) 建立一个 ...

随机推荐

  1. [转帖]HBase详解(很全面)

    HBase详解(很全面) very long story 简单看了一遍 很多不明白的地方.. 2018-06-08 16:12:32 卢子墨 阅读数 34857更多 分类专栏: HBase   [转自 ...

  2. 从零开始学Flask框架-002

    Jinja2模板 默认情况下,Flask 在程序文件夹中的templates 子文件夹中寻找模板. Jinja2 中的extends 指令从Flask-Bootstrap 中导入bootstrap/b ...

  3. 03 python 对象笔记

    类的命名方法 1.使用大驼峰命名法:每一个单词的首字母大写(第一个的也要)2.单词之间不需要下划线 对象的内置函数和属性 1.使用dir()函数来获取对象的内置方法和属性.返回值是一个列表.2.返回中 ...

  4. 'telent' 不是内部或外部命令,也不是可运行的程序或批处理文件。

    今天在Windows 7操作系统中安装了memcached内存缓存软件,本想借助Windows的telnet程序向memcached缓存管理系统中添加一些数据,可是命令输入后竟然出现了如下图这样的错误 ...

  5. Singer House CodeForces - 830D (组合计数,dp)

    大意: 一个$k$层完全二叉树, 每个节点向它祖先连边, 就得到一个$k$房子, 求$k$房子的所有简单路径数. $DP$好题. 首先设$dp_{i,j}$表示$i$房子, 分出$j$条简单路径的方案 ...

  6. 2019牛客多校八 H. How Many Schemes (AC自动机,树链剖分)

    大意: 给定树, 每条边有一个字符集合, 给定$m$个模式串, $q$个询问$(u,v)$, 对于路径$(u,v)$中的所有边, 每条边从对应字符集合中取一个字符, 得到一个串$s$, 求$s$至少包 ...

  7. BZOJ4400 TJOI2012桥(最短路+线段树)

    首先找出任意一条1-n的最短路径.显然删除的边只有在该最短路上才会对最短路长度产生影响. 不会证明地给出一个找不到反例的结论:删除一条边后,新图中一定有一条1-n的最短路径上存在一条边x->y, ...

  8. 【css】文本效果

    一.字体属性 在css字体样式中常见的字体属性有以下几种 p{ font-size: 50px; /*字体大小*/ line-height: 30px; /*行高*/ font-family: 幼圆, ...

  9. 【转载】C#指定文件夹下面的所有内容复制到目标文件夹下面

    在涉及到文件夹操作的过程中,有时候需要将文件夹下的所有内容复制拷贝到另一个文件夹,在C#的开发中有时候会遇到这个功能需求将指定文件夹下所有的内容复制到另一个文件夹,这个过程需要遍历所有的文件和目录.此 ...

  10. 在pivotal cloud foundry上申请账号和部署应用

    Created by Wang, Jerry, last modified on Jul 04, 2016 URL: http://run.pivotal.io/ maintain your mobi ...