AtCoder AGC031D A Sequence of Permutations (群论、置换快速幂)
题目链接
https://atcoder.jp/contests/agc031/tasks/agc031_d
题解
这居然真的是个找规律神题。。。
首先要明白置换的一些基本定义,置换$p$和$q$的复合$a$定义为$a_i=p_$, 记作$a=pq$. 有定理$(pq){-1}=q{-1}p^{-1}$.
显然题目里定义的$f(p,q)=qp^{-1}$.
然后打表打出前几项:
\(a_1=p\)
\(a_2=q\)
\(a_3=qp^{-1}\)
\(a_4=qp^{-1}q^{-1}\)
\(a_5=qp^{-1}q^{-1}pq^{-1}\)
\(a_6=qp^{-1}q^{-1}p^2q^{-1}\)
\(a_7=qp^{-1}q^{-1}pqpq^{-1}\)
\(a_8=qp^{-1}q^{-1}pqp^{-1}qpq^{-1}\)
好像……规律并不明显啊……
好吧,结论是$a_n=ga_g^{-1}$, 其中$g=qp^{-1}q^{-1}p$. (这是怎么看出来的……)
知道了结论,我们还是比较容易归纳证明的: 显然$gg^{-1}=e$ ($e$为单位元,\(e_i=i\)), 于是$a_n=(ga_g^{-1})(ga_g^{-1}){-1}=ga_a_{-1}g^{-1}=ga_g^{-1}$.
于是设$m'=\lfloor \frac{6}\rfloor, n'=m-6m'$, \(a_n=g^{m'}a_{n'}g^{-m'}\), 直接快速幂计算即可,时间复杂度$O(n\log m)$或$O(n)$.
代码
#include<cstdio>
#include<cstdlib>
#include<cassert>
#include<iostream>
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 1e5;
const int lgM = 30;
int p[N+3],q[N+3],pp[N+3],qq[N+3];
int g[N+3],f[N+3],ff[N+3];
int tmp[N+3];
int aux[N+3];
int ans[N+3];
int a[7][N+3];
int n,m;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++) scanf("%d",&p[i]),pp[p[i]] = i;
for(int i=1; i<=n; i++) scanf("%d",&q[i]),qq[q[i]] = i;
for(int i=1; i<=n; i++) a[1][i] = p[i],a[2][i] = q[i];
for(int k=3; k<=6; k++)
{
for(int i=1; i<=n; i++) a[k][a[k-2][i]] = a[k-1][i];
}
for(int i=1; i<=n; i++) g[i] = q[pp[qq[p[i]]]],f[i] = i,tmp[i] = g[i];
int nn = m%6==0?6:m%6; m = (m-1)/6;
for(int i=0; m; i++)
{
if(m&(1<<i))
{
m-=(1<<i);
for(int j=1; j<=n; j++) aux[j] = f[tmp[j]];
for(int j=1; j<=n; j++) f[j] = aux[j];
}
for(int j=1; j<=n; j++) aux[j] = tmp[tmp[j]];
for(int j=1; j<=n; j++) tmp[j] = aux[j];
}
for(int i=1; i<=n; i++) ff[f[i]] = i;
for(int i=1; i<=n; i++) ans[i] = f[a[nn][ff[i]]];
for(int i=1; i<=n; i++) printf("%d ",ans[i]);
return 0;
}
AtCoder AGC031D A Sequence of Permutations (群论、置换快速幂)的更多相关文章
- Atcoder Grand Contest 031 D - A Sequence of Permutations(置换+猜结论)
Atcoder 题面传送门 & 洛谷题面传送门 猜结论神题. 首先考虑探究题目中 \(f\) 函数的性质,\(f(p,q)_{p_i}=q_i\leftarrow f(p,q)\circ p= ...
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)
Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...
- HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)
Sequence Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- POJ 2778 DNA Sequence (ac自动机+矩阵快速幂)
DNA Sequence Description It's well known that DNA Sequence is a sequence only contains A, C, T and G ...
- POJ2778 DNA Sequence(AC自动机+矩阵快速幂)
题目给m个病毒串,问不包含病毒串的长度n的DNA片段有几个. 感觉这题好神,看了好久的题解. 所有病毒串构造一个AC自动机,这个AC自动机可以看作一张有向图,图上的每个顶点就是Trie树上的结点,每个 ...
- POJ 2778 DNA Sequence(AC自动机+矩阵快速幂)
题目链接:http://poj.org/problem?id=2778 题意:有m种DNA序列是有疾病的,问有多少种长度为n的DNA序列不包含任何一种有疾病的DNA序列.(仅含A,T,C,G四个字符) ...
- 【POJ】2778 DNA Sequence(AC自动机+矩阵快速幂)
题目 传送门:QWQ 分析 对着Trie图搞快速幂. 为什么这样是对的呢? 详见:http://www.matrix67.com/blog/archives/276 有些地方还不是很理解......为 ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
随机推荐
- 【原创】大叔案例分享(5)id打通
经常有一些需要做id打通的场景,比如用户id打通等, 问题抽象是每条数据都可以解析出一个或多个kv pair:(id_type,id),然后需要将某一个kv pair匹配的多条数据进行merge: 比 ...
- $.ajax通用格式&&XMLHttpRequest对象属性和方法
$.ajax({ url: "", type: "POST", async: false, cache:false, //默认true data: {}, da ...
- RGB2GRAY 各种算法速度比较,整形乘法比查表法快!
1. 查表法,外循环用 这种格式 : //for(int j = 0; j != h; ++j)// for(int i = 0; i!=w;++i)//. for(int j = 0; j != ...
- vue进阶:vuex(数据池)
非父子组件传值 vuex 一.非父子组件传值 基于父子组件通信与传值实现非父子组件传值的示例关键代码: <template> <div> <!-- 学员展示 --> ...
- vue 编辑
点击文字修改 <div class="baseInfo"> <p class="title">基本信息</p> <p ...
- go语言入门(2)数据类型
1,命名 Go语言中的函数名.变量名.常量名.类型名.语句标号和包名等所有的命名,都遵循一个简单的命名规则:一个名字必须以一个字母(Unicode字母)或下划线开头,后面可以跟任意数量的字母.数字或下 ...
- VS2015 中统计整个项目的代码行数
在一个大工程中有很多的源文件和头文件,我如何快速统计总行数? ------解决方案--------------------b*[^:b#/]+.*$^b*[^:b#/]+.*$ ctrl + shif ...
- 线程----code
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- another-redis-desktop-manager
brew cask install another-redis-desktop-manager
- python常用模块:标准文件及模块练习
1.请写出规范目录 并解释各文件夹的作用 bin 执行文件core 核心业务逻辑conf 配置文件lib 库.公共代码.第三方模块db 数据分析log 日志文件readme 文本文档 2.改造atm+ ...