http://blog.csdn.net/guduruyu/article/details/72866144

最小二乘法多项式曲线拟合,是常见的曲线拟合方法,有着广泛的应用,这里在借鉴最小二乘多项式曲线拟合原理与实现的原理的基础上,介绍如何在OpenCV来实现基于最小二乘的多项式曲线拟合。

 

概念

最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。

原理

给定数据点pi(xi,yi),其中i=1,2,…,m。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差最小。近似曲线在点pi处的偏差δi= φ(xi)-y,i=1,2,...,m。

常见的曲线拟合方法:

1.使偏差绝对值之和最小

2.使偏差绝对值最大的最小

     

3.使偏差平方和最小

按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:

1. 设拟合多项式为:

2.各点到这条曲线的距离之和,即偏差平方和如下:

3.为了求得符合条件的a值,对等式右边求ai偏导数,因而我们得到了:

.......

4.将等式左边进行一下化简,然后应该可以得到下面的等式:

.......

5.把这些等式表示成矩阵的形式,就可以得到下面的矩阵:

6.即X*A=Y。

我们只要解出这个线性方程,即可求得拟合曲线多项式的系数矩阵。而在OpenCV中,有一个专门用于求解线性方程的函数,即cv::solve(),具体调用形式如下:

  1. int cv::solve(
  2. cv::InputArray X, // 左边矩阵X, nxn
  3. cv::InputArray Y, // 右边矩阵Y,nx1
  4. cv::OutputArray A, // 结果,系数矩阵A,nx1
  5. int method = cv::DECOMP_LU // 估算方法
  6. );

我们只需要按照上述原理,构造出矩阵X和Y,即可调用该函数,计算出多项式的系数矩阵A。

opencv中支持的估算方法如下图所示:

实现如下:

  1. bool polynomial_curve_fit(std::vector<cv::Point>& key_point, int n, cv::Mat& A)
  2. {
  3. //Number of key points
  4. int N = key_point.size();
  5. //构造矩阵X
  6. cv::Mat X = cv::Mat::zeros(n + 1, n + 1, CV_64FC1);
  7. for (int i = 0; i < n + 1; i++)
  8. {
  9. for (int j = 0; j < n + 1; j++)
  10. {
  11. for (int k = 0; k < N; k++)
  12. {
  13. X.at<double>(i, j) = X.at<double>(i, j) +
  14. std::pow(key_point[k].x, i + j);
  15. }
  16. }
  17. }
  18. //构造矩阵Y
  19. cv::Mat Y = cv::Mat::zeros(n + 1, 1, CV_64FC1);
  20. for (int i = 0; i < n + 1; i++)
  21. {
  22. for (int k = 0; k < N; k++)
  23. {
  24. Y.at<double>(i, 0) = Y.at<double>(i, 0) +
  25. std::pow(key_point[k].x, i) * key_point[k].y;
  26. }
  27. }
  28. A = cv::Mat::zeros(n + 1, 1, CV_64FC1);
  29. //求解矩阵A
  30. cv::solve(X, Y, A, cv::DECOMP_LU);
  31. return true;
  32. }

测试代码如下:

  1. int main()
  2. {
  3. //创建用于绘制的深蓝色背景图像
  4. cv::Mat image = cv::Mat::zeros(480, 640, CV_8UC3);
  5. image.setTo(cv::Scalar(100, 0, 0));
  6. //输入拟合点
  7. std::vector<cv::Point> points;
  8. points.push_back(cv::Point(100., 58.));
  9. points.push_back(cv::Point(150., 70.));
  10. points.push_back(cv::Point(200., 90.));
  11. points.push_back(cv::Point(252., 140.));
  12. points.push_back(cv::Point(300., 220.));
  13. points.push_back(cv::Point(350., 400.));
  14. //将拟合点绘制到空白图上
  15. for (int i = 0; i < points.size(); i++)
  16. {
  17. cv::circle(image, points[i], 5, cv::Scalar(0, 0, 255), 2, 8, 0);
  18. }
  19. //绘制折线
  20. cv::polylines(image, points, false, cv::Scalar(0, 255, 0), 1, 8, 0);
  21. cv::Mat A;
  22. polynomial_curve_fit(points, 3, A);
  23. std::cout << "A = " << A << std::endl;
  24. std::vector<cv::Point> points_fitted;
  25. for (int x = 0; x < 400; x++)
  26. {
  27. double y = A.at<double>(0, 0) + A.at<double>(1, 0) * x +
  28. A.at<double>(2, 0)*std::pow(x, 2) + A.at<double>(3, 0)*std::pow(x, 3);
  29. points_fitted.push_back(cv::Point(x, y));
  30. }
  31. cv::polylines(image, points_fitted, false, cv::Scalar(0, 255, 255), 1, 8, 0);
  32. cv::imshow("image", image);
  33. cv::waitKey(0);
  34. return 0;
  35. }
绘制结果:

2017.06.05

算法+OpenCV】基于opencv的直线和曲线拟合与绘制(最小二乘法)的更多相关文章

  1. Canny边缘检测算法(基于OpenCV的Java实现)

    目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维 ...

  2. 【AdaBoost算法】基于OpenCV实现人脸检测Demo

    一.关于检测算法 分类器训练: 通过正样本与负样本训练可得到分类器,opencv有编译好的训练Demo,按要求训练即可生成,这里我们直接使用其已经训练好的分类器检测: 检测过程: 检测过程很简单,可以 ...

  3. 基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  4. opencv基于PCA降维算法的人脸识别

    opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...

  5. 基于OpenCV的KNN算法实现手写数字识别

    基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...

  6. 图像矫正-基于opencv实现

    一.引言 上篇文章中四种方法对图像进行倾角矫正都非常有效.Hough变换和Radon相似,其抗干扰能力比较强,但是运算量大,程序执行慢,其改进方法为:我们可以不对整幅图像进行操作,可以在图像中选取一块 ...

  7. 对倾斜的图像进行修正——基于opencv 透视变换

    这篇文章主要解决这样一个问题: 有一张倾斜了的图片(当然是在Z轴上也有倾斜,不然直接旋转得了o(╯□╰)o),如何尽量将它纠正到端正的状态. 而要解决这样一个问题,可以用到透视变换. 关于透视变换的原 ...

  8. [转载]卡尔曼滤波器及其基于opencv的实现

    卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接, ...

  9. OpenCV2学习笔记(十四):基于OpenCV卡通图片处理

    得知OpenCV有一段时间.除了研究的各种算法的内容.除了从备用,据导游书籍和资料,尝试结合链接的图像处理算法和日常生活,第一桌面上(随着摄像头)完成了一系列的视频流处理功能.开发平台Qt5.3.2+ ...

随机推荐

  1. 移动端form表单

    始终绑定submit事件 不单独的对[提交]按钮绑定click事件,对整个表单绑定submit提交事件,这样可以让整个表单内的文本框获得Enter提交的VIP待遇,并且在移动端中可以让文本框聚焦时键盘 ...

  2. maven项目引入jar包

    今天看一下maven项目的创建和具体操作.

  3. 浏览器出现“ net::ERR_BLOCKED_BY_CLIENT”错误的解决方法

    转载自:http://www.dbmng.com/art-2136.html Failed to load resource: net::ERR_BLOCKED_BY_CLIENT错误报告 错误原因: ...

  4. JAVA NIO使用非阻塞模式实现高并发服务器

    参考:http://blog.csdn.net/zmx729618/article/details/51860699  https://zhuanlan.zhihu.com/p/23488863 ht ...

  5. Hadoop单点伪分布模式安装

    Hadoop单点伪分布模式安装 概述 单点 single-node,单节点,即一台计算机. 伪分布式模式 pseudo-distributed mode 所谓集群,表面上看是多台计算机联合完成任务:但 ...

  6. 第八周课上测试ch03

    测试-1-ch03 任务详情 通过输入gcc -S -o main.s main.c,将下面c程序"week04学号.c"编译成汇编代码 int g(int x){ return ...

  7. Sparrow - Distributed, Low Latency Scheduling

    http://www.cs.berkeley.edu/~matei/papers/2013/sosp_sparrow.pdf http://www.eecs.berkeley.edu/~keo/tal ...

  8. 21.SQL to MongoDB Mapping Chart-官方文档摘录

    有关关系型数据库跟Mongod的语法对比 In addition to the charts that follow, you might want to consider the Frequentl ...

  9. python学习笔记——字符串

    类方法string.upper(str)需要引入string模块,实例方法str.upper()不需要引入string模块 无与伦比的列表解析功能 # coding=utf-8 # 列表解析 prin ...

  10. python web 程序的9种部署方式

    python有很多web 开发框架,代码写完了,部署上线是个大事,通常来说,web应用一般是三层结构 Web Server====>    Application=====>   DB S ...