【题意】有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价。n<=10^4。

【算法】期望DP

【题解】首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期望公式,可以依赖于买到已集和未集邮票的情况:

$$g[i]=\frac{i}{n}*g[i]+\frac{n-i}{n}*g[i+1]+1$$

当然最后记得+1,然后移项解方程。

设f[i]表示已拥有i张邮票及其的期望代价,会发现因为是倒推,所以代价的问题变得很麻烦。

我们将代价倒置,假设购买k次,那么第一张k元……第k张1元,那么就会发现代价变成了集齐的期望购买次数。

根据全期望公式:

$$f[i]=\frac{i}{n}*(f[i]+g[i])+\frac{n-i}{n}*(f[i+1]+g[i+1])+1$$

然后移项解方程即可。

复杂度O(n)。

也可以直观地设计状态(不倒置代价),然后计算无穷:DaD3zZ

#include<cstdio>
double f[],g[],n;
int main()
{
scanf("%lf",&n);
for(int i=n-;i>=;i--)f[i]=f[i+]+n/(n-i);
for(int i=n-;i>=;i--)g[i]=g[i+]+f[i+]+i*f[i]/(n-i)+n/(n-i);
printf("%.2lf",g[]);
return ;
}

【BZOJ】1426: 收集邮票 期望DP的更多相关文章

  1. BZOJ 1426 收集邮票 ——概率DP

    $f(i)$表示现在有$i$张,买到$n$张的期望 所以$f(i)=f(i+1)+\frac {n}{n-i}$ 费用提前计算,每张邮票看做一元,然后使后面每一张加1元 $g(i)$表示当前为$i$张 ...

  2. BZOJ 1426: 收集邮票 数学期望 + DP

    Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...

  3. BZOJ 1426: 收集邮票 [DP 期望 平方]

    传送门 题意: 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮 ...

  4. bzoj 1426: 收集邮票【期望dp】

    我太菜了,看的hzwer的blog才懂 大概是设f[i]表示已经拥有了i张邮票后期望还要买的邮票数,这个转移比较简单是f[i]=f[i]*(i/n)+f[i+1]*((n-i)/n)+1 然后设g[i ...

  5. bzoj 1426:收集邮票 求平方的期望

    显然如果收集了k天,ans=k*(k+1)/2=(k^2+k)/2.那么现在要求的就是这个东西的期望. 设f[i]表示已有i张邮票,收集到n张的期望次数,g[i]表示已有i张邮票,收集到n张的次数的平 ...

  6. 【BZOJ1426】收集邮票 期望DP

    题目大意 有\(n\)种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是\(n\)种邮票中的哪一种是等概率的,概率均为\(\frac{1} ...

  7. bzoj 1426 收集邮票

    f[i]:当前已拥有i种邮票,还需要买的邮票数的期望值. g[i]:当前已拥有i种邮票,还需要的钱的期望值. 每张邮票初始都是1元钱,每买一张邮票,还没购买的邮票每张都涨价1元.  f[i]=1+(n ...

  8. 收集邮票 (概率dp)

    收集邮票 (概率dp) 题目描述 有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率 ...

  9. 【BZOJ1426】收集邮票 期望

    [BZOJ1426]收集邮票 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的, ...

随机推荐

  1. nginx 几个常用的标准模块介绍

    ngx_http_ssl_module(https) 1:指明是否启用的虚拟主机的ssl功能 ssl on | off; 2:指明虚拟主机使用的证书文件 ssl_certificate /usr/lo ...

  2. 第二周:Scrum Meeting

    一.站立会议 顾名思义,站立会议即是在敏捷开发的冲刺阶段,为了更好地平衡团队成员的“交流”和“集中注意力”之间的矛盾.通过每日例会,即团队成员通过面对面的交流,并且其中大多数团队成员站着对会议进行讨论 ...

  3. oracle 绝对值小于1的数值显示小数点前面的0

    SELECT DECODE(TRUNC(-.98),0,REPLACE(TO_CHAR(-.98), '.', '0.'),TO_CHAR(-.98))FROM DUAL;

  4. [翻译]Android官方文档 - 通知(Notifications)

    翻译的好辛苦,有些地方也不太理解什么意思,如果有误,还请大神指正. 官方文档地址:http://developer.android.com/guide/topics/ui/notifiers/noti ...

  5. Java 调用 google 翻译

    1.Java代码 public class Translator { public String translate(String langFrom, String langTo, String wo ...

  6. Vue2.0 - 全局操作 Vue.set

    引:http://www.cnblogs.com/zccblog/p/7192420.html Vue.set 的作用就是在构造器外部操作构造器内部的数据.属性或者方法.比如在vue构造器内部定义了一 ...

  7. 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分

    题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...

  8. BZOJ3711 PA2014Druzyny(动态规划+cdq分治+线段树)

    显然可以dp:设f[i]为前i个人最多能分多少组,则f[i]=max{f[j]}+1 (cmax<=i-j<=dmin). 容易发现d的限制是一段连续区间,二分或者随便怎么搞都行.c则有点 ...

  9. 解题:ZJOI 2014 力

    题面 事实说明只会FFT板子是没有用的,还要把式子推成能用FFT/转化一下卷积的方式 虽然这个题不算难的多项式卷积 稍微化简一下可以发现实际是$q_i$和$\frac{1}{(i-j)^2}$在卷,然 ...

  10. echars画折线图的一种数据处理方式

    echars画折线图的一种数据处理方式 <!DOCTYPE html> <html> <head> <meta charset="utf-8&quo ...