【算法】矩阵快速幂

【题解】

根据f[n]=f[n-1]+f[n-2],可以构造递推矩阵:

$$\begin{vmatrix}1 & 1\\ 1 & 0\end{vmatrix} \times \begin{vmatrix}f_n \\ f_{n-1} \end{vmatrix}=\begin{vmatrix}f_{n+1}\\f_n\end{vmatrix}\\$$

写成幂形式:

$$\begin{vmatrix}1 & 1\\ 1 & 0\end{vmatrix}^n \times \begin{vmatrix}1 \\ 0\end{vmatrix}=\begin{vmatrix}f_{n+1}\\f_n\end{vmatrix}$$

矩阵快速幂。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int n=,MOD=;
int a[n][n],b[n][n],t[n][n],m;
void mul(int a[n][n],int b[n][n],int ans[n][n])
{
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
t[i][j]=;
for(int k=;k<n;k++)
t[i][j]=(t[i][j]+a[i][k]*b[k][j])%MOD;
}
for(int i=;i<n;i++)
for(int j=;j<n;j++)
ans[i][j]=t[i][j];
}
int main()
{
scanf("%d",&m);
while(m!=-)
{
if(m==){printf("0\n");scanf("%d",&m);continue;}
m--;
a[][]=a[][]=a[][]=;a[][]=;
b[][]=;b[][]=b[][]=b[][]=;
while(m>)
{
if(m&)mul(a,b,b);
m>>=;
mul(a,a,a);
}
printf("%d\n",b[][]);
scanf("%d",&m);
}
return ;
}

可以发现|1 0|乘上之后没有任何变化,所以可以得到更好看的式子:

$$\begin{vmatrix}1 & 1\\ 1 & 0\end{vmatrix}^n=\begin{vmatrix}f_{n+1} & f_n\\ f_n & f_{n-1}\end{vmatrix}$$

用来推性质十分方便,适用于n∈Z(可以是负数)。

【POJ】3070 Fibonacci的更多相关文章

  1. 【POJ】3070 Fibonacci(矩阵乘法)

    http://poj.org/problem?id=3070 根据本题算矩阵,用快速幂即可. 裸题 #include <cstdio> #include <cstring> # ...

  2. 【POJ】1704 Georgia and Bob(Staircase Nim)

    Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, ...

  3. 【POJ】1067 取石子游戏(博弈论)

    Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

  4. 【BZOJ】【1986】【USACO 2004 Dec】/【POJ】【2373】划区灌溉

    DP/单调队列优化 首先不考虑奶牛的喜欢区间,dp方程当然是比较显然的:$ f[i]=min(f[k])+1,i-2*b \leq k \leq i-2*a $  当然这里的$i$和$k$都是偶数啦~ ...

  5. 【POJ】【2104】区间第K大

    可持久化线段树 可持久化线段树是一种神奇的数据结构,它跟我们原来常用的线段树不同,它每次更新是不更改原来数据的,而是新开节点,维护它的历史版本,实现“可持久化”.(当然视情况也会有需要修改的时候) 可 ...

  6. 【POJ】3233 Matrix Power Series

    [算法]二分+矩阵快速幂 [题意]给定矩阵A和整数k,MOD,求A^0+A^1+A^2+...+A^k. [题解] 定义题目要求的答案为f(n),即: $$f_n=\sum_{i=0}^{n}A^i$ ...

  7. 【POJ】1222 EXTENDED LIGHTS OUT

    [算法]高斯消元 [题解] 高斯消元经典题型:异或方程组 poj 1222 高斯消元详解 异或相当于相加后mod2 异或方程组就是把加减消元全部改为异或. 异或性质:00 11为假,01 10为真.与 ...

  8. 【POJ】2892 Tunnel Warfare

    [算法]平衡树(treap) [题解]treap知识见数据结构 在POJ把语言从G++换成C++就过了……??? #include<cstdio> #include<algorith ...

  9. 【POJ】【1637】Sightseeing tour

    网络流/最大流 愚人节快乐XD 这题是给一个混合图(既有有向边又有无向边),让你判断是否有欧拉回路…… 我们知道如果一个[连通]图中每个节点都满足[入度=出度]那么就一定有欧拉回路…… 那么每条边都可 ...

随机推荐

  1. Linux 常用指令【持续更新】

    在学校的时候学过一些简单的 Linux 命令,主要是文件的创建拷贝解压等操作,最近在电脑上安装了一个CentOS6.8版本的基本版,纯命令行操作. ../ 代表上一级目录 ./ 代表本级目录 / 代表 ...

  2. 详解免费高效实用的.NET操作Excel组件NPOI(转)

    有时间研究一下NPOI http://www.cnblogs.com/pengze0902/p/6150070.html

  3. EM算法【转】

    混合高斯模型和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与K-means一样,给定的训练样本是, ...

  4. 【bzoj3730】震波 动态点分治+线段树

    题目描述 在一片土地上有N个城市,通过N-1条无向边互相连接,形成一棵树的结构,相邻两个城市的距离为1,其中第i个城市的价值为value[i].不幸的是,这片土地常常发生地震,并且随着时代的发展,城市 ...

  5. C++函数中的那些坑

    平时写程序时,我们可能或多或少对一些用法感到朦胧,下面我对一些易困惑大家,或者易用错的地方作点介绍. 一.函数的一些注意点 1.函数返回类型不能是数组类型或函数类型,但可以是指向数组或函数的指针. 2 ...

  6. 【刷题】BZOJ 1030 [JSOI2007]文本生成器

    Description JSOI交给队员ZYX一个任务,编制一个称之为"文本生成器"的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生 ...

  7. elasticsearch 第一篇(入门篇)

    介绍 elasticsearch是一个高效的.可扩展的全文搜索引擎 基本概念 Near Realtime(NRT): es是一个接近实时查询平台,意味从存储一条数据到可以索引到数据时差很小,通常在1s ...

  8. elk +redis 环境搭建

    这个是最新的elk+redis搭建日志分析平台,今年时间是2015年9月11日. Elk分别为 elasticsearch,logstash, kibana 官网为:https://www.elast ...

  9. struts2初探(一)

    首先需要了解Struts2框架的运行过程: request从发送到服务器,即tomcat,然后tomcat参考web.xml,发现所有的url都需要经过struts2的过滤, Struts2调用dof ...

  10. Codeforces 932.F Escape Through Leaf

    F. Escape Through Leaf time limit per test 3 seconds memory limit per test 256 megabytes input stand ...