[DeeplearningAI笔记]序列模型1.10-1.12LSTM/BRNN/DeepRNN
5.1循环序列模型
觉得有用的话,欢迎一起讨论相互学习~Follow Me
1.10长短期记忆网络(Long short term memory)LSTM
Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
门控循环神经网络单元GRU

长短期记忆网络LSTM
- 记忆细胞更新:
\[\breve{C}^{<t>}=tanh(W_c[a^{<t-1>},x^{<t>}]+b_c)\] - 更新门:
\[\gamma_u=\sigma(W_u[a^{<t-1>},x^{<t>}]+b_{u})\] - 遗忘门--遗忘门在GRU中相当于\((1-\gamma_u)\),在LSTM中使用专用的\(\gamma_f\)代替:
\[\gamma_f=\sigma(W_f[a^{<t-1>},x^{<t>}]+b_{f})\] - 输出门:
\[\gamma_o=\sigma(W_o[a^{<t-1>},x^{<t>}]+b_{o})\] - 记忆细胞:
\[c^{<t>}=\gamma_u * \breve{c}^{<t>} + \gamma_f * c^{<t-1>}\] - \[a^{<t>}=\gamma_o * tanh(c^{<t>})\]


1.11双向神经网络Bidirectional RNN
- 这个模型可以让你在序列的某处不仅可以获取之前的信息,还可以获取未来的信息

- 在这个句子中,根据原始的模型,并不能区别泰迪熊和美国前总统泰迪的区别。必须要使用到Teddy词后的信息才能识别出Teddy的意义。无论这些单元是标准的RNN块还是GRU单元或者是LSTM单元,前向的结构都不能够识别出Teddy的意义。
- 双向神经网络结构如下图所示:

这样的网络构成了一个无环图,其中信息的流向,如下动图中显示:

1.12深层循环神经网络Deepl RNNs

- 通过计算\(a^{[2]<3>}\)的值来了解RNN的计算过程,\(a^{[2]<3>}\)有两个输入,一个是从下面传上来的\(a^{[1]<3>}\),一个是从左边传进来的输入\(a^{[2]<2>}\)
\[a^{[2]<3>}=g(W_a^{[2]}[a^{[2]<2>},a^{[1]<3>}]+b_a^{[2]})\] - 对于普通的神经网络,也许可以经常看见100层神经网络,但是对于RNN来说,有三层就已经有很多参数了,因为有时间的维度,RNN会变得相当大,一般很少会看见RNN堆叠到很深的层次。
- 但是深层次的预测却经常见到,即第三层的输出会连接上更深的层,但是水平方向上却不相连
[DeeplearningAI笔记]序列模型1.10-1.12LSTM/BRNN/DeepRNN的更多相关文章
- [DeeplearningAI笔记]序列模型2.10词嵌入除偏
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.10词嵌入除偏 Debiasing word embeddings Bolukbasi T, Chang K W, Zo ...
- [DeeplearningAI笔记]序列模型3.9-3.10语音辨识/CTC损失函数/触发字检测
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.9语音辨识 Speech recognition 问题描述 对于音频片段(audio clip)x ,y生成文本 ...
- [DeeplearningAI笔记]序列模型3.3集束搜索
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.3 集束搜索Beam Search 对于机器翻译来说,给定输入的句子,会返回一个随机的英语翻译结果,但是你想要一 ...
- [DeeplearningAI笔记]序列模型3.7-3.8注意力模型
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.7注意力模型直观理解Attention model intuition 长序列问题 The problem of ...
- [DeeplearningAI笔记]序列模型3.6Bleu得分/机器翻译得分指标
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.6Bleu得分 在机器翻译中往往对应有多种翻译,而且同样好,此时怎样评估一个机器翻译系统是一个难题. 常见的解决 ...
- [DeeplearningAI笔记]序列模型3.2有条件的语言模型与贪心搜索的不可行性
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2选择最可能的句子 Picking the most likely sentence condition lan ...
- [DeeplearningAI笔记]序列模型3.1基本的 Seq2Seq /image to Seq
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1基础模型 [1] Sutskever I, Vinyals O, Le Q V. Sequence to Se ...
- [DeeplearningAI笔记]序列模型1.7-1.9RNN对新序列采样/GRU门控循环神经网络
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采 ...
- [DeeplearningAI笔记]序列模型1.5-1.6不同类型的循环神经网络/语言模型与序列生成
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.5不同类型的循环神经网络 上节中介绍的是 具有相同长度输入序列和输出序列的循环神经网络,但是对于很多应用\(T_{x}和 ...
随机推荐
- JS - Promise使用详解--摘抄笔记
第一部分: JS - Promise使用详解1(基本概念.使用优点) 一.promises相关概念 promises 的概念是由 CommonJS 小组的成员在 Promises/A 规范中提出来的. ...
- baidu网盘下载神器 Pandownload
最近百度网盘超级会员到期,经同学的推荐,我最近发现了一个特别NB的工具pandownload,官方说是能够破解加速,经过使用确实能够达到很快的下载速度. 这里附上官方的下载网站 http://pand ...
- Nginx 使用札记
nginx是什么? nginx是俄罗斯人 Igor Sysoev为俄罗斯访问量第二的Rambler.ru站点开发的一个十分轻量级的HTTP服务器.它是一个高性能的HTTP和反向代理服务器,同时也可以作 ...
- Java中的生产者、消费者问题
Java中的生产者.消费者问题描述: 生产者-消费者(producer-consumer)问题, 也称作有界缓冲区(bounded-buffer)问题, 两个进程共享一个公共的固定大小的缓冲区(仓库) ...
- Kotlin在处理GET和POST请求的数据问题
1.网络请求获取到的数据流处理 java写法 BufferedReader br = new BufferedReader(new InputStreamReader(in, "utf-8& ...
- QLayout窗口布局
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QLayout窗口布局 本文地址:http://techieliang.com/201 ...
- Spring异步事件
1.发布事件 @Data public class CustomEvent extends ApplicationEvent implements Serializable { private Boo ...
- hdfs源码分析第一弹
1. hdfs定义 HDFS is the primary distributed storage used by Hadoop applications. A HDFS cluster primar ...
- 使用Runtime.getRuntime().exec()方法的几个陷阱
Process 子类的一个实例,该实例可用来控制进程并获得相关信息.Process 类提供了执行从进程输入.执行输出到进程.等待进程完成.检查进程的退出状态以及销毁(杀掉)进程的方法. 创建进程的方法 ...
- BZOJ3573 HNOI2014米特运输
显然确定一个点的权值后整棵树权值确定.只要算出根节点的权值就能知道两种改法是否等价. 乘的话显然会炸,取log即可.map似乎会出一些问题,sort即可. #include<iostream&g ...