递归

	int find_kth(vector<int>& nums1, int begin1, int size1, vector<int>& nums2, int begin2, int size2, int k)
{
size1 = min(k, size1);//第k大最多只要前k个
size2 = min(k, size2);
if (k == 1)
{
return min(nums1[begin1], nums2[begin2]);
}
if (size1 == 1)
{
if (begin2 + k - 1 < nums2.size())
return min(max(nums1[begin1], nums2[begin2 + k - 2]), nums2[begin2 + k - 1]);
else
return max(nums1[begin1], nums2[begin2 + k - 2]);
}
if (size2 == 1)
{
if (begin1 + k - 1 < nums1.size())
return min(max(nums2[begin2], nums1[begin1 + k - 2]), nums1[begin1 + k - 1]);
else
return max(nums2[begin1], nums1[begin1 + k - 2]);
}
double s = k / static_cast<double>(size1 + size2);//对应的比例位置
int q = s*(size1)+begin1;/**/
int p = s*(size2)+begin2;/**/
if (static_cast<int>(s*(size1)) + static_cast<int>(s*(size2))> k - 1 && (q - begin1) && (p - begin2))
//调节使 k刚好落在p 或 k,p k有可能是第k大在下一轮仍保留
{
--p;
--q;
}
if (static_cast<int>(s*(size1)) + static_cast<int>(s*(size2))< k - 3 && (q - begin1) && (p - begin2))
//调节使 k刚好落在p 或 k
{
++p;
++q;
}
if (nums1[q] > nums2[p])
{
k = k - (p - begin2);
size1 = q - begin1 + 1;
size2 -= (p - begin2);
begin2 = p;
}
else
{
if (nums1[q] < nums2[p])
{
k = k - (q - begin1);
size1 -= (q - begin1);
begin1 = q;
size2 = p - begin2 + 1;
}
else
{
return nums1[q];
}
}
return find_kth(nums1, begin1, size1, nums2, begin2, size2, k);
}

  迭代

int find_kth(vector<int>& nums1, int begin1, int size1, vector<int>& nums2, int begin2, int size2, int k)
{
while (!(size2 == 1 || size1 == 1 || k == 1))
{
size1 = min(k, size1);//第k大最多只要前k个
size2 = min(k, size2);
double s = k / static_cast<double>(size1 + size2);//对应的比例位置
int q = s*(size1)+begin1;/**/
int p = s*(size2)+begin2;/**/
if (static_cast<int>(s*(size1)) + static_cast<int>(s*(size2)) > k - 1 && (q - begin1) && (p - begin2))
//调节使 k刚好落在p 或 k
{
--p;
--q;
}
if (static_cast<int>(s*(size1)) + static_cast<int>(s*(size2)) < k - 3 && (q - begin1) && (p - begin2))
//调节使 k刚好落在p 或 k p k可能为第k大下轮保留
{
++p;
++q;
}
if (nums1[q] > nums2[p])
{
k = k - (p - begin2);
size1 = q - begin1 + 1;
size2 -= (p - begin2);
begin2 = p;
}
else
{
if (nums1[q] < nums2[p])
{
k = k - (q - begin1);
size1 -= (q - begin1);
begin1 = q;
size2 = p - begin2 + 1;
}
else
{
return nums1[q];
}
}
}
if (k == 1)
{
return min(nums1[begin1], nums2[begin2]);
}
if (size1 == 1)
{
if (begin2 + k - 1 < nums2.size())
return min(max(nums1[begin1], nums2[begin2 + k - 2]), nums2[begin2 + k - 1]);
else
return max(nums1[begin1], nums2[begin2 + k - 2]);
}
if (size2 == 1)
{
if (begin1 + k - 1 < nums1.size())
return min(max(nums2[begin2], nums1[begin1 + k - 2]), nums1[begin1 + k - 1]);
else
return max(nums2[begin1], nums1[begin1 + k - 2]);
}
}

  

log(m+n)找第k大的更多相关文章

  1. 找第k大的数

    (找第k大的数) 给定一个长度为1,000,000的无序正整数序列,以及另一个数n(1<=n<=1000000),接下来以类似快速排序的方法找到序列中第n大的数(关于第n大的数:例如序列{ ...

  2. 快速排序算法的实现 && 随机生成区间里的数 && O(n)找第k小 && O(nlogk)找前k大

    思路:固定一个数,把这个数放到合法的位置,然后左边的数都是比它小,右边的数都是比它大 固定权值选的是第一个数,或者一个随机数 因为固定的是左端点,所以一开始需要在右端点开始,找一个小于权值的数,从左端 ...

  3. luogu_P1177 【模板】快速排序 (快排和找第k大的数)

    [算法] 选取pivot,然后每趟快排用双指针扫描(l,r)区间,交换左指针大于pivot的元素和右指针小于pivot的元素,将区间分成大于pivot和小于pivot的 [注意] 时间复杂度取决于pi ...

  4. 从一组数找第K大元素

    最近做面试题,经常与到一个问题,如何高效的从一组数中找到第K大的元素. 其实我们最容易想到的肯定是蛮力法. 1. 我们可以对这个乱序数组按照从大到小先行排序,然后取出前k大,总的时间复杂度为O(n*l ...

  5. O(n)线性时间找第K大,中位数

    运用快速排序的思想,可以达到线性时间找到一串数的第K大 #include<cstdio> #define F(i,a,b) for(int i=a;i<=b;i++) ],n; vo ...

  6. CSUOJ2078-查找第k大(读入挂)

    查找第k大 Submit Page Output 对于每组数据,输出第k大的数 Sample Input 1 6 2 1 2 3 4 5 6 Sample Output 5 Hint #include ...

  7. P1049 找第K大的数

    题目描述 给定一个无序正整数序列, 以及另一个数n (1<=n<=1000000), 然后以类似快速排序的方法找到序列中第n大的数(关于第n大的数:例如序列{1,2,3,4,5,6}中第3 ...

  8. HDU - 4006 The kth great number multiset应用(找第k大值)

    The kth great number Xiao Ming and Xiao Bao are playing a simple Numbers game. In a round Xiao Ming ...

  9. 快排找第k大模板

    int get_kth(int l,int r) { if (l==r) return a[r]; ]; while (i<j) { while (a[i]<mid) i++; while ...

随机推荐

  1. U3D中的又一个坑

    using System.Collections; using System.Collections.Generic; using UnityEditor; using UnityEngine; pu ...

  2. MySQL数据库篇之单表查询

    主要内容: 一.单表查询的语法 二.关键字的执行优先级 三.简单查询 四.where约束 五.分组查询 group by 六.having过滤 七.查询排序 order by 八.限制查询的记录数 l ...

  3. Linux实战教学笔记48:openvpn架构实施方案(一)跨机房异地灾备

    第一章VPN介绍 1.1 VPN概述 VPN(全称Virtual Private Network)虚拟专用网络,是依靠ISP和其他的NSP,在公共网络中建立专用的数据通信网络的技术,可以为企业之间或者 ...

  4. Scala基础:面向对象之对象和继承

    对象 object 相当于 class 的单个实例,通常在里面放一些静态的 field 或者 method:在 Scala 中没有静态方法和静态字段,但是可以使用 object 这个语法结构来达到同样 ...

  5. linux shell脚本编程笔记(一): 构建基本脚本

    1. echo -n str        打印不换行 2. 反引号来圈住命令传入变量 eg: 生成日志文件: #!/bin/bash today=`date +%y%m%d` ls /usr/bin ...

  6. 128. Longest Consecutive Sequence (HashTable)

    Given an unsorted array of integers, find the length of the longest consecutive elements sequence. F ...

  7. Xcode8 问题

    ios10 定位问题,在plist中手动添加NSCameraUsageDescription http://www.cocoachina.com/bbs/read.php?tid-1685721.ht ...

  8. 小程序开发运营必看:微信小程序平台运营规范

    一.原则及相关说明 ​ 微信最核心的价值,就是连接——提供一对一.一对多和多对多的连接方式,从而实现人与人.人与智能终端.人与社交化娱乐.人与硬件设备的连接,同时连接服务.资讯.商业. ​ 微信团队一 ...

  9. 存储过程中使用事务和try catch

    一.存储过程中使用事务的简单语法 在存储过程中使用事务时非常重要的,使用数据可以保持数据的关联完整性,在Sql server存储过程中使用事务也很简单,用一个例子来说明它的语法格式: 代码 : Cre ...

  10. 虚拟机硬盘格式的选择:qcow2、 raw等

    虚拟机硬盘格式的选择:qcow2. raw等曾经有过一段时间,徘徊于对虚拟机硬盘格式的迷惑中,2009年,终于得出了一些结论(下面的思路基本通用于其他虚拟机) 搜了下,发现大部分用qemu或者kvm的 ...