POJ 3468 A Simple Problem with Integers(线段树功能:区间加减区间求和)
题目链接:http://poj.org/problem?id=3468
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 56005 | Accepted: 16903 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is
to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
Source
field=source&key=POJ+Monthly--2007.11.25" style="text-decoration:none">POJ Monthly--2007.11.25
, Yang Yi#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
//lson和rson分辨表示结点的左儿子和右儿子
//rt表示当前子树的根(root),也就是当前所在的结点
#define LL long long
const int maxn = 111111;
//maxn是题目给的最大区间,而节点数要开4倍,确切的来说节点数要开大于maxn的最小2x的两倍
LL add[maxn<<2];
LL sum[maxn<<2];
void PushUp(int rt) //把当前结点的信息更新到父结点
{
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt,int m)//把当前结点的信息更新给儿子结点
{
if (add[rt])
{
add[rt<<1] += add[rt];
add[rt<<1|1] += add[rt];
sum[rt<<1] += add[rt] * (m - (m >> 1));
sum[rt<<1|1] += add[rt] * (m >> 1);
add[rt] = 0;
}
}
void build(int l,int r,int rt)
{
add[rt] = 0;
if (l == r)
{
scanf("%lld",&sum[rt]);
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt)
{
if (L <= l && r <= R)
{
add[rt] += c;
sum[rt] += (LL)c * (r - l + 1);
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m)
update(L , R , c , lson);
if (m < R)
update(L , R , c , rson);
PushUp(rt);
}
LL query(int L,int R,int l,int r,int rt)
{
if (L <= l && r <= R)
{
return sum[rt];
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
LL ret = 0;
if (L <= m)
ret += query(L , R , lson);
if (m < R)
ret += query(L , R , rson);
return ret;
}
int main()
{
int N , Q;
scanf("%d%d",&N,&Q);//N为节点数
build(1 , N , 1);
while (Q--)//Q为询问次数
{
char op[2];
int a , b , c;
scanf("%s",op);
if (op[0] == 'Q')
{
scanf("%d%d",&a,&b);
printf("%lld\n",query(a , b , 1 , N , 1));
}
else
{
scanf("%d%d%d",&a,&b,&c);//c为区间a到b添加的值
update(a , b , c , 1 , N , 1);
}
}
return 0;
}
POJ 3468 A Simple Problem with Integers(线段树功能:区间加减区间求和)的更多相关文章
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...
- [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 75541 ...
- POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)
A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...
- POJ 3468 A Simple Problem with Integers //线段树的成段更新
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 59046 ...
- poj 3468 A Simple Problem with Integers 线段树加延迟标记
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers 线段树区间更新
id=3468">点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072 ...
- POJ 3468 A Simple Problem with Integers(线段树,区间更新,区间求和)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 67511 ...
随机推荐
- ASP.NET MVC 自定义Razor视图WorkContext
概述 1.在ASP.NET MVC项目开发的过程中,我们经常需要在cshtml的视图层输出一些公用信息 比如:页面Title.服务器日期时间.页面关键字.关键字描述.系统版本号.资源版本号等 2.普通 ...
- mini2440裸机试炼之——看门狗中断和复位操作
看门狗的工作原理: 设本系统程序完整执行一周期的时间是Tp,看门狗的定时周期为Ti,Ti>Tp,在程序正常执行时,定时器就不会溢出,若因为干扰等原因使系统不能在Tp时刻改动定时器的记数值,定时器 ...
- nginx配置用户认证
location ~ .*admin\.php$ { auth_basic "weifenglinux auth"; auth_ba ...
- QueryRunner 结果处理器
package cn.itcast.dbutil; import java.sql.SQLException; import java.util.List; import java.util.Map; ...
- Python 开发者的 6 个必备库,你都了解吗?
无论你是正在使用 Python 进行快速开发,还是在为 Python 桌面应用制作原生 UI ,或者是在优化现有的 Python 代码,以下这些 Python 项目都是应该使用的. Python那些事 ...
- 建立对ActiveX控件的了解
本文来自百度百科:ActiveX控件 ActiveX是Microsoft对于一系列策略性面向对象程序技术和工具的称呼,其中主要的技术是组件对象模型(COM).在有目录和其它支持的网络中,COM变成 ...
- 微信公共服务平台开发(.Net 的实现)1-------认证“成为开发者”
这些代码也就开始认证的时候用一次,以后就不用了: const string Token = "XXXXX";//你的token protected void Page_Load(o ...
- machine_learning-knn算法具体解释(近邻算法)
近邻算法是机器学习算法中的入门算法,该算法用于针对已有数据集对未知数据进行分类. 该算法核心思想是通过计算预測数据与已有数据的相似度猜測结果. 举例: 如果有例如以下一组数据(在下面我们统一把该数据作 ...
- 1 - Reverse Integer
Reverse digits of an integer.Example1: x = 123, return 321Example2: x = -123, return -321Discuss: 1. ...
- Chrome 浏览器端口的坑:ERR_UNSAFE_PORT
nodejs 启动了一个6000端口的服务 本来是打算测试用的,结果一直报以下错误 但我使用 curl 来请求该接口地址是正常的.这就很纳闷了. 经过一番折腾无果之后,百度才知道.这个6000端口是非 ...