地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069

题目:

Counting Divisors

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1235    Accepted Submission(s): 433

Problem Description
In mathematics, the function d(n) denotes the number of divisors of positive integer n.

For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors.

In this problem, given l,r and k, your task is to calculate the following thing :

(∑i=lrd(ik))mod998244353

 
Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.

In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107).

 
Output
For each test case, print a single line containing an integer, denoting the answer.
 
Sample Input
3
1 5 1
1 10 2
1 100 3
 
Sample Output
10
48
2302
 
Source
 

思路:

  首先需要知道:一个数可以用唯一分解定理表示成:n=p1^a1*p2^2......*pn^an

         质约数个数为(a1+1)*(a2+1)*....*(an+1)

  那么n^k的质约数个数为(a1*k+1)*(a2*k+1)*.....*(an*k+1)

  所以这题的关键是求l,r区间每个数的质约数有那些,且次数是多少。

  考虑到:l,r最大为1e12,所以枚举1-1e6内的所有素数后即可知道l,r中每个数的质约数有哪些,同时可以知道次数是多少

  但是直接在1-1e6的素数表内查找l,r中的某个数的素约数的时间复杂度是O(1e6),显然不可行。

  所以可以通过线性筛的思想来求:对于1-1e6的素数,考虑他会在l,r内筛掉哪些数即可。

  因为1e12每个数最多有20左右的质约数,所以时间复杂度是O((r-l)*20)+O(1e5)(质数表大小)

  

 #include <bits/stdc++.h>

 using namespace std;

 #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double pi=acos(-1.0);
const int K=1e6+;
const int mod=; LL ql,qr,qk,cnt,ls[K],sum[K],pr[K];
bool pa[K];
void init(void)
{
for(int i=;i<=;i++)
if(!pa[i])
{
pr[cnt++]=i;
for(int j=i*;j<=;j+=i) pa[j]=;
}
}
LL sc(int t)
{
LL ans=;
for(LL i=ql;i<=qr;i++) sum[i-ql]=,ls[i-ql]=i;
for(int i=;i<cnt;i++)
{
for(LL j=max(2LL,(ql+pr[i]-)/pr[i])*pr[i];j<=qr;j+=pr[i])
{
LL cnt=;
while(ls[j-ql]%pr[i]==) ls[j-ql]/=pr[i],cnt++;
sum[j-ql]=(sum[j-ql]*(qk*cnt+))%mod;
}
}
for(LL i=ql;i<=qr;i++)
{
if(ls[i-ql]!=) sum[i-ql]=(sum[i-ql]*(qk+))%mod;
ans+=sum[i-ql];
if(ans>=mod) ans-=mod;
}
return ans;
} int main(void)
{
//freopen("in.acm","r",stdin);
int t;scanf("%d",&t);
init();
while(t--)
{
scanf("%lld%lld%lld",&ql,&qr,&qk);
printf("%lld\n",sc(t));
}
return ;
}

2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors的更多相关文章

  1. 2017 Multi-University Training Contest - Team 4——HDU6069&&Counting Divisors

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题目意思:首先解释一下d[n]这个函数表示n有多少个因子,百度一下可以知道这个函数是一个非完全积 ...

  2. 【2017 Multi-University Training Contest - Team 4】Counting Divisors

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6069 [Description] 定义d(i)为数字i的因子个数; 求∑rld(ik) 其中l,r ...

  3. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  4. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  5. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  6. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  7. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  8. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

随机推荐

  1. 隐马尔可夫树(HMT模型)

    HMT(Hidden Markov Tree)隐马尔可夫树 [论文] 小波变换与HMT模型的图像插值算法-郭昌-中山大学学报(自然科学版)

  2. ResNet 结构理解

    博客来源于:https://blog.csdn.net/buyi_shizi/article/details/53336192:https://blog.csdn.net/dcrmg/article/ ...

  3. C++引用具体解释

    引用是C++中新出现的.有别于C语言的语法元素之中的一个. 关于引用的说明,网络上也有不少.可是总感觉云遮雾绕,让人印象不深刻. 今天我就来深入解释一下引用.并就一些常见的观点进行说明,最后附带代码演 ...

  4. UE打包32位程序遇到Win32 is not a supported platform for MindWaveEditor. Valid platforms are Win64.

    1>------ 已启动全部重新生成: 项目: MindWave, 配置: Development_Editor Win32 ------1> Win32 is not a support ...

  5. measure layout onMeasure() onLayout()

    1.onMeasure() 在这个函数中,ViewGroup会接受childView的请求的大小,然后通过childView的 measure(newWidthMeasureSpec, heightM ...

  6. 有Thread1、Thread2、Thread3、Thread4四条线程分别统计C、D、E、F四个盘的大小,所有线程都统计完毕交给Thread5线程去做汇总,应当如何实现?

    利用java.util.concurrent包下的CountDownLatch(减数器)或CyclicBarrier(循环栅栏) 转自:http://www.cnblogs.com/westward/ ...

  7. 模拟window桌面实现

    正在开发中的游戏有个全屏功能--可以在window桌面背景上运行,就像一些视频播放器在桌面背景上播放一样的,花了个上午整了个Demo放出来留个纪念. 实现功能:显示图标,双击图标执行相应的程序,右击图 ...

  8. Android APK反编译详解

    这段时间在学Android应用开发,在想既然是用Java开发的应该很好反编译从而得到源代码吧,google了一下,确实很简单,以下是我的实践过程. 在此郑重声明,贴出来的目的不是为了去破解人家的软件, ...

  9. Storm基础概念与单词统计示例

    Storm基本概念 Storm是一个分布式的.可靠地.容错的数据流处理系统.Storm分布式计算结构称为Topology(拓扑)结构,顾名思义,与拓扑图十分类似.该拓扑图主要由数据流Stream.数据 ...

  10. js 闭包与垃圾回收-待删

    关于闭包请看戳 串讲-解释篇:作用域,作用域链,执行环境,变量对象,活动对象,闭包,本篇写的不太好: 先摆定义: 函数对象,可以通过作用域链相互关联起来,函数体内部的变量都可以保存在函数作用域内,这种 ...