Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)
题面
题解
显然,如果让你查询整个数列的最大异或和,建一颗$01Trie$,每给定一个$p$,按照二进制后反方向跳就行了(比如当前二进制位为$1$,则往$0$跳,反之亦反)。
但是现在要支持在最末尾插入和区间查询,将这颗$Trie$可持久化一下就好了(可持久化$Trie$敲板)
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::sort; using std::swap;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 6e5 + 10;
int trie[N * 24][2], latest[N * 24];
int s[N], rt[N], n, m, tot;
void insert(int i, int k, int p, int q) { // q -> p s[i][k]
if(k < 0) { latest[q] = i; return ; }
int c = (s[i] >> k) & 1;
if(p) trie[q][c ^ 1] = trie[p][c ^ 1];
trie[q][c] = ++tot;
insert(i, k - 1, trie[p][c], trie[q][c]);
latest[q] = max(latest[trie[q][0]], latest[trie[q][1]]);
}
int query(int now, int val, int k, int limit) {
if(k < 0) return s[latest[now]] ^ val;
int c = (val >> k) & 1;
if(latest[trie[now][c ^ 1]] >= limit)
return query(trie[now][c ^ 1], val, k - 1, limit);
else return query(trie[now][c], val , k - 1, limit);
}
int main () {
read(n), read(m);
latest[0] = -1, rt[0] = ++tot;
insert(0, 23, 0, rt[0]);
for(int i = 1; i <= n; ++i) {
int x; read(x);
s[i] = s[i - 1] ^ x, rt[i] = ++tot;
insert(i, 23, rt[i - 1], rt[i]);
}
for(int i = 1; i <= m; ++i) {
char opt[3]; scanf("%s", opt);
if(opt[0] == 'A') {
int x; read(x);
rt[++n] = ++tot, s[n] = s[n - 1] ^ x;
insert(n, 23, rt[n - 1], rt[n]);
} else {
int l, r, x; read(l), read(r), read(x);
printf("%d\n", query(rt[r - 1], x ^ s[n], 23, l - 1));
}
}
return 0;
}
Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)的更多相关文章
- 洛谷P4592 [TJOI2018]异或 【可持久化trie树】
题目链接 BZOJ4592 题解 可持久化trie树裸题 写完就A了 #include<algorithm> #include<iostream> #include<cs ...
- 洛谷 P4735 最大异或和 解题报告
P4735 最大异或和 题目描述 给定一个非负整数序列\(\{a\}\),初始长度为\(N\). 有\(M\)个操作,有以下两种操作类型: A x:添加操作,表示在序列末尾添加一个数\(x\),序列的 ...
- 【题解】洛谷P4735最大异或和
学习了一下可持久化trie的有关姿势~其实还挺好理解的,代码也短小精悍.重点在于查询某个历史版本的trie树上的某条边是否存在,同样我们转化到维护前缀和来实现.同可持久化线段树一样,我们为了节省空间继 ...
- [洛谷P4735]最大异或和
题目大意:有一串初始长度为$n$的序列$a$,有两种操作: $A\;x:$在序列末尾加一个数$x$ $Q\;l\;r\;x:$找一个位置$p$,满足$l\leqslant p\leqslant r$, ...
- 【洛谷P4735】最大异或和
题目大意:给定一个长度为 N 的序列,支持两个操作:在序列末尾添加一个新的数字,查询序列区间 \([l,r]\) 内使得 \(a_p\oplus a_{q+1}\oplus ... a_N\oplus ...
- 【洛谷 P4735】 最大异或和 (可持久化Trie)
题目链接 维护整个数列的异或前缀和和\(s\),然后每次就是要求\(s[N]\text{^}x\text{^}s[k],l-1<=k<=r-1\)的最大值 如果没有\(l\)的限制,那么直 ...
- 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)
LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...
- 洛谷 P3359 改造异或树
题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...
- [洛谷P4592][TJOI2018]异或
题目大意:有一棵$n$个点的树,第$i$个点权值为$w_i$,有两种操作: $1\;x\;y:$询问节点$x$的子树中与$y$异或结果的最大值 $2\;x\;y\;z:$询问路径$x$到$y$上点与$ ...
随机推荐
- 使用nginx做反向代理
很多同学喜欢用nginx做反向代理访问某些网站,原因大家都懂的,今天老高记录一下如何使用nginx做反向代理以及如何配置和优化nginx的反向代理. 准备工作 首先,你需要一个稳定的国外的便宜的VPS ...
- react UI组件库 Salt UI
https://salt-ui.github.io/?spm=a219a.7629140.0.0.JWztQO
- PAT 1009. Triple Inversions (35) 数状数组
Given a list of N integers A1, A2, A3,...AN, there's a famous problem to count the number of inversi ...
- Let's Encrypt 免费通配 https 签名证书 安装方法2 ,安卓签名无法认证!
Let's Encrypt 免费通配 https 签名证书 安装方法 按照上文 配置完毕后你会发现 在pc浏览器中正常访问,在手机浏览器中无法认证 你只需要安装一个或多个中级证书 1.查看Nginx ...
- javaScript 中的一些日常用法总结
从今天开始把开发中常用到的js语法 一一记录下来 方便以后复习回顾用: 1:对字符串进行替换 replace 以及 replaceAll replace : var begin_date =begin ...
- 微信小程序rpx单位
rpx单位是微信小程序中css的尺寸单位,rpx可以根据屏幕宽度进行自适应.规定屏幕宽为750rpx.如在 iPhone6 上,屏幕宽度为375px,共有750个物理像素,则750rpx = 375p ...
- C++ STL标准入门
C++:STL标准入门汇总 第一部分:(参考百度百科) 一.STL简介 STL(Standard Template Library,标准模板库)是惠普实验室开发的一系列软件的统称.它是由Alexand ...
- ASLR
@author:dlive ASLR address space layout randomization 微软从windows vista/windows server 2008(kernel ve ...
- samba中的pdbedit用法
pdbedit用于在samba服务器中创建用户: 它的用法包括 pdbedit -a username:新建Samba账户. pdbedit -x username:删除Samba账户. pdbedi ...
- CentOS 7.1使用yum安装MySql5.6.24
http://www.cnblogs.com/yuanfeiblog/p/5276492.html