2017四川省赛D题《Dynamic Graph》
题意:给出一个n个点m条边的有向无环图(DAG),初始的时候所有的点都为白色。然后有Q次操作,每次操作要把一个点的颜色改变,白色<->黑色,对于每次操作,输出满足下列点对<u,v>,u,v都为白色且可以相互到达的个数。
数据范围:

DAG上的问题,首先最暴力的方法就是,对于每一次更改都进行一遍dfs,B[u][v],表示U点可以到达v点,然后对于U的父亲结点来说,暴力合并,复杂度约为n^4,这样显然会爆炸。解法是每次用BITSET优化,因为B[u][v]的状态非零即一。
代码如下:
#include<bits/stdc++.h>
typedef long long LL;
using namespace std;
const int maxn = 350;
int N, M, Q;
struct Edge
{
int to, next;
Edge(int to = 0, int next = 0): to(to), next(next) {}
} E[maxn * maxn];
int head[maxn], tot;
void initedge()
{
memset(head, -1, sizeof(head));
tot = 0;
}
void addedge(int u, int v)
{
E[tot] = Edge(v, head[u]);
head[u] = tot++;
}
bitset<maxn>BT[maxn];
int vis[maxn], cul[maxn];
void init()
{
for(int i = 0; i <= N; i++)
{
BT[i].reset();
vis[i] = cul[i] = 0;
}
}
void DFS(int u)
{
BT[u].reset();
BT[u][u] = 1;
vis[u] = 1;
if(cul[u]) return ;
for(int k = head[u]; ~k; k = E[k].next)
{
int v = E[k].to;
if(!vis[v]) DFS(v);
if(!cul[v]) BT[u] |= BT[v];
}
}
int main ()
{
while(~scanf("%d %d %d", &N, &M, &Q))
{
init();
initedge();
for(int i = 1; i <= M; i++)
{
int u, v;
scanf("%d %d", &u, &v);
addedge(u, v);
}
for(int i = 1; i <= Q; i++)
{
int u, ans = 0;
scanf("%d", &u);
cul[u] ^= 1;
for(int i = 1; i <= N; i++) vis[i] = 0;
for(int i = 1; i <= N; i++)
{
if(!vis[i]) DFS(i);
ans += BT[i].count() - 1;
}
printf("%d\n", ans);
}
}
return 0;
}
另外还有一种方法:
维护F[u][v],表示u->v的路径条数,然后对于每次操作更新F[u][v]-+=F[u][x]*F[x][v],然后判断F[u][v]是否>0即可,这样做是对的,但是F[u][v]可能非常大,要用unsigned long long ,虽然unsigned long long 存不下,但是他有自动取模的功能,即使是这样也有可能出现F[u][v]之间有路径,但是取模后为0的情况,但是这个概率是很小的,unsigned long long 已经很大了,取模后出现零的情况应该不会被卡。unsigned int 也可以过。
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long LL;
const int maxn = 350;
LL dp[maxn][maxn], vis[maxn];
int N, M, Q;
void init()
{
for(int i = 1; i <= N; i++)
{
vis[i] = 0;
for(int j = 1; j <= N; j++)
dp[i][j] = 0;
}
}
int main ()
{
while(~scanf("%d %d %d", &N, &M, &Q))
{
init();
for(int i = 1; i <= M; i++)
{
int u, v;
scanf("%d %d", &u, &v);
dp[u][v]++;
}
for(int k = 1; k <= N; k++ )
for(int st = 1; st < k; st++)
for(int ed = k + 1; ed <= N; ed++)
dp[st][ed] += dp[st][k] * dp[k][ed];
for(int i = 1; i <= Q; i++)
{
int u;
scanf("%d", &u);
if(vis[u] == 0)
{
vis[u] = 1;
for(int st = 1; st < u; st++)
for(int ed = u + 1; ed <= N; ed++)
dp[st][ed] -= dp[st][u] * dp[u][ed];
}
else
{
vis[u] = 0;
for(int st = 1; st < u; st++)
for(int ed = u + 1; ed <= N; ed++)
dp[st][ed] += dp[st][u] * dp[u][ed];
}
int ans = 0;
for(int st = 1; st <= N; st++)
{
if(vis[st]) continue;
for(int ed = st + 1; ed <= N; ed++)
{
if(vis[ed]) continue;
if(dp[st][ed] > 0) ans++;
}
}
printf("%d\n", ans);
}
}
return 0;
}
2017四川省赛D题《Dynamic Graph》的更多相关文章
- 2017四川省赛E题( Longest Increasing Subsequence)
提交地址: https://www.icpc-camp.org/contests/4rgOTH2MbOau7Z 题意: 给出一个整数数组,F[i]定义为以i结尾的最长上升子序列,然后问以此删除掉第i个 ...
- 【数论】【原根】【动态规划】【bitset】2017四川省赛 K.2017 Revenge
题意: 给你n(不超过200w)个数,和一个数r,问你有多少种方案,使得你取出某个子集,能够让它们的乘积 mod 2017等于r. 2017有5这个原根,可以使用离散对数(指标)的思想把乘法转化成加法 ...
- 2017湘潭赛 A题 Determinant (高斯消元取模)
链接 http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1260 今年湘潭的A题 题意不难 大意是把n*(n+1)矩阵去掉某一列 ...
- ACM-ICPC国际大学生程序设计竞赛北京赛区(2017)网络赛 i题 Minimum(线段树)
描述 You are given a list of integers a0, a1, …, a2^k-1. You need to support two types of queries: 1. ...
- XTU 1267 - Highway - [树的直径][2017湘潭邀请赛H题(江苏省赛)]
这道题可能有毒……总之一会儿能过一会儿不能过的,搞的我很心烦…… 依然是上次2017江苏省赛的题目,之前期末考试结束了之后有想补一下这道题,当时比较懵逼不知道怎么做……看了题解也不是很懂……就只好放弃 ...
- XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]
是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...
- XTU 1264 - Partial Sum - [2017湘潭邀请赛E题(江苏省赛)]
2017江苏省赛的E题,当时在场上看错了题目没做出来,现在补一下…… 题目链接:http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id ...
- 2017年第六届数学中国数学建模国际赛(小美赛)C题解题思路
这篇文章主要是介绍下C题的解题思路,首先我们对这道C题进行一个整体的概括,结构如下: C题:经济类 第一问:发现危险人群. 发现:欺诈的方式开始.雇佣或浪漫的承诺. 数据→确定特定的经济萧条地区→确定 ...
- 论文笔记:(TOG2019)DGCNN : Dynamic Graph CNN for Learning on Point Clouds
目录 摘要 一.引言 二.相关工作 三.我们的方法 3.1 边缘卷积Edge Convolution 3.2动态图更新 3.3 性质 3.4 与现有方法比较 四.评估 4.1 分类 4.2 模型复杂度 ...
随机推荐
- 从零搭建SSM框架(四)手动实现Tomcat部署
发布War包 Windows环境部署 增加如下配置 <Context path="/" docBase="cnki" debug="0" ...
- ActiveMQ 与 Spring
1. ActiveMQ安装 1.1 下载(版本5.14.5) 点我官网下载 1.2 安装 解压下载的压缩文件到任意目录中(eg. C:\Program Files (x86)\apache-activ ...
- Python自定义web框架、Jinja2
WSGI(Web Server Gateway Interface)是一种规范,它定义了使用python编写的web app与web server之间接口格式,实现web app与web server ...
- xv6/bootasm.S + xv6/bootmain.c
xv6/bootasm.S #include "asm.h" #include "memlayout.h" #include "mmu.h" ...
- kvm 简单了解
网络: *主机(装有ESX的PC服务器)简称host,虚拟机简称guest *Host的一个或多个网卡组成一个虚拟交换机,虚拟交换机上创建端口组label,端口组指定vlan tag,虚拟机指定网络标 ...
- python脚本-实现自动按规则创建指定大小和指定个数的文件案例
# -*- coding: cp936 -*-#---------------------------------------------------------------------------- ...
- git clone的
git clone git@e.coding.net:wudi360/*******.git
- HDU 2181 哈密顿绕行世界问题 (DFS)
题目链接:https://vjudge.net/contest/185350#problem/C 题目大意:一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城 ...
- Gitlab部署及汉化操作
一.简介 GitLab是一个利用 Ruby on Rails 开发的开源应用程序,实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目. GitLab拥有与Github类似的功能 ...
- 深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution)
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 上一篇讲了深度学习方法(十) ...