IEEEXtreme 10.0 - Painter's Dilemma
这是 meelo 原创的 IEEEXtreme极限编程比赛题解
Xtreme 10.0 - Painter's Dilemma
题目来源 第10届IEEE极限编程大赛
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/painters-dilemma
Bob just got his first job as a house painter. Today, on his first day on the job, he has to paint a number of walls.
For those of you that have done some house painting before, you know that this is no easy task. Each wall has to be painted in multiple rounds, possibly with a different color of paint each time, and there needs to be sufficient time of waiting between consecutive rounds for the paint to dry.
To make optimal use of their time, house painters usually paint walls while waiting for other walls to dry, and hence interleave the rounds of painting different walls. But this also brings up another challenge for the painters: different walls may require different colors of paint, so they might have to replace the color on one of their paint brushes before painting that wall. But this requires washing the paint brush, waiting for it to dry, and then applying the new paint to the brush, all of which takes precious time.
The more experienced house painters circumvent the issue by bringing a lot of paint brushes. But Bob is not that fortunate, and only has two paint brushes!
Given a sequence of colors c1, c2, …, cN that Bob needs, in the order that he needs them, can you help him determine the minimum number of times he needs to change the color of one of his brushes? Both of his brushes will have no color to begin with.
Bob may ask you to compute this number for a few different scenarios, but not many. After all, he only needs to do this until he gets his first paycheck, at which point all his effort will have been worth the trouble, and he can go buy more paint brushes.
Input Format
The first line of input contains t, 1 ≤ t ≤ 5, which gives the number of scenarios.
Each scenario consists of two lines. The first line contains an integer N, the length of the sequence of colors Bob needs. The second line contains a sequence of N integers c1, c2, …, cN, representing the sequence of colors that Bob needs, in the order that he needs them. Each distinct color is represented with a distinct integer.
Constraints
1 ≤ N ≤ 500, 1 ≤ ci ≤ 20
Output Format
For each scenario, you should output, on a line by itself, the minimum number of times Bob needs to change the color of one of his brushes.
Sample Input
2
5
7 7 2 11 7
10
9 1 7 6 9 9 8 7 6 7
Sample Output
3
6
Explanation
In the first scenario, Bob needs to paint using the colors 7, 7, 2, 11, and 7, in that order. He could start by applying color 7 to the first brush. Then he can use the first brush for the first two times. The third time he needs the color 2. He could apply that color to his second brush, and thus use his second brush for the third time. Next he needs the color 11, so he might apply this color to the first brush, and use the first brush this time. Finally, he needs the color 7 just as before. But the first brush no longer has this color, so we need to reapply it. Just as an example, he could apply 7 to the second brush, and then use the second brush. In total, he had to change the color of one of his brushes 4 times.
However, Bob can be smarter about the way he changes colors. For example, considering the same sequence as before, he could start by applying color 7 to the first brush, and use the first brush for the first two times. Then he could use the second brush twice, first by applying the color 2, and then by applying the color 11. This leaves the first brush with paint 7, which he can use for the last time. This leaves him with only 3 color changes in total.
题目解析
这是动态规划的题目
状态为
(时间t,第1把刷子的颜色c1,第2把刷子的颜色c2)
刷子的颜色除了20种颜色以外,还需要一种状态表示没有颜色
f(t, c1, c2)表示
画t种颜色,最终第1把刷子的颜色c1,第2把刷子的颜色c2最少换刷子的次数
状态转移函数为
其中p表示时间t需要刷子的颜色
只有c1==p或者c2==p的状态才可到达,其余状态用最大值表示不可达
初始状态为
21表示刷子没有颜色的状态
程序
C++
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; const int num_color = ;
const int max_change = ;
const int max_time = ; int minChange(vector<int> &colors) {
int count[max_time][num_color+][num_color+];
for(int c1=; c1<num_color+; c1++) {
for(int c2=; c2<num_color+; c2++) {
count[][c1][c2] = max_change;
}
}
count[][num_color][num_color] = ;
for(int t=; t<=colors.size(); t++) {
for(int c1=; c1<num_color+; c1++) {
for(int c2=; c2<num_color+; c2++) {
int min_change = max_change;
if(c1 == colors[t-] || c2 == colors[t-]) {
for(int c=; c<num_color+; c++) {
min_change = min(min_change, count[t-][c1][c] + );
}
for(int c=; c<num_color+; c++) {
min_change = min(min_change, count[t-][c][c2] + );
}
count[t][c1][c2] = min(min_change, count[t-][c1][c2]);
}
else {
count[t][c1][c2] = max_change;
}
}
}
} int min_change = max_change;
for(int c1=; c1<num_color+; c1++) {
min_change = min(min_change, count[colors.size()][c1][colors.back()]);
min_change = min(min_change, count[colors.size()][colors.back()][c1]);
}
return min_change;
} int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int T;
cin >> T;
for(int t=; t<T; t++) {
int n_color;
cin >> n_color;
vector<int> colors;
int color;
for(int c=; c<n_color; c++) {
cin >> color;
colors.push_back(color-);
}
cout << minChange(colors) << endl;
}
return ;
}
博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址
IEEEXtreme 10.0 - Painter's Dilemma的更多相关文章
- IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...
- IEEEXtreme 10.0 - Ellipse Art
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...
- IEEEXtreme 10.0 - Counting Molecules
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Checkers Challenge
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Game of Stones
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- IEEEXtreme 10.0 - Full Adder
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...
- IEEEXtreme 10.0 - N-Palindromes
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...
- IEEEXtreme 10.0 - Mysterious Maze
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...
随机推荐
- 【BZOJ 4449】[Neerc2015]Distance on Triangulation 多边形分治结构
这题好神啊……正解方向是分治,据我所知的分治方法有:I.离线后直接对多边形以及所有的询问进行分治 II.建立多边形的分治结构(对于三角形来说类似线段树,对于对角线来说类似平衡树),然后每次在这个分治结 ...
- python基础----模块、包
一 模块 ...
- 新的JavaScript数据结构Streams
最近在网上看到了一个新的 Javascript 小程序——Streams,起初以为是一个普通的 Javascript 类库,但读了关于它的介绍后,我发现,这不是一个简单的类库,而且作者的重点也不是这个 ...
- db2 数据库操作JDBC .addBatch() 方法执行时,报错排查结果
今天调试db2数据的存储时,jdbc使用addBatch方法时,抛出异常,异常信息如下: [jcc][1091][10404][3.62.56] 数据转换无效:参数实例 对于所请求的转换无效. ER ...
- Centos7单机部署ELK
一. 简介 1.1 介绍 ELK是三个开源工具组成,简单解释如下: Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风 ...
- Dozer 对象的"搬运工"
前言:项目中,经常会遇到各层对象之间相互进行值传递的过程,如在数据据持久层有一持久类EntityA,在视图层可能会变为ViewA,通常情况下,这两个类的属性 名称 .类型都是一致的, 在两个对象传 ...
- CF821 A. Okabe and Future Gadget Laboratory 水
Link 题意:询问n X n中非1数是否能够由同行同列中分别取两个数做和得到. 思路:水题. /** @Date : 2017-07-03 16:23:18 * @FileName: A.cpp * ...
- 转【非容器化Jenkins连接Kubernetes】
一.环境说明 OS系统版本:Ubuntu 18.04 TLS 软件版本:Jenkins 2.121.2 Kubernetes plugin 1.10.2 ...
- bluebird -1 New Promise方法
new Promise new Promise(function(function resolve, function reject) resolver) -> Promise 创建一个Prom ...
- void指针和NULL指针
Void指针和NULL指针 Void指针: Void指针我们称之为通用指针,就是可以指向任意类型的数据.也就是说,任何类型的指针都可以赋值给Void指针. 举例: #include<stdio. ...