SAMER08A - Almost Shortest Path

Finding the shortest path that goes from a starting point to a destination point given a set of points and route lengths connecting them is an already well known problem, and it's even part of our daily lives, as shortest path programs are widely available nowadays.

Most people usually like very much these applications as they make their lives easier. Well, maybe not that much easier.

Now that almost everyone can have access to GPS navigation devices able
to calculate shortest paths, most routes that form the shortest path
are getting slower because of heavy traffic. As most people try to
follow the same path, it's not worth it anymore to follow these
directions.

With this in his mind, your boss asks you to develop
a new application that only he will have access to, thus saving him
time whenever he has a meeting or any urgent event. He asks you that the
program must answer not the shortest path, but the almost shortest
path. He defines the almost shortest path as the shortest path that goes
from a starting point to a destination point such that no route between
two consecutive points belongs to any shortest path from the starting
point to the destination.

For example, suppose the figure below
represents the map given, with circles representing location points, and
lines representing direct, one-way routes with lengths indicated. The
starting point is marked as S and the destination point is marked as D.
The bold lines belong to a shortest path (in this case there are two
shortest paths, each with total length 4). Thus, the almost shortest
path would be the one indicated by dashed lines (total length 5), as no
route between two consecutive points belongs to any shortest path.
Notice that there could exist more than one possible answer, for
instance if the route with length 3 had length 1. There could exist no
possible answer as well.

Input

The input contains several test cases. The first line of a test case contains two integers N (2 ≤ N ≤ 500) and M (1 ≤ M ≤ 104),
separated by a single space, indicating respectively the number of
points in the map and the number of existing one-way routes connecting
two points directly. Each point is identified by an integer between 0
and N -1. The second line contains two integers S and D, separated by a single space, indicating respectively the starting and the destination points (SD; 0 ≤ S, D < N).

Each one of the following M lines contains three integers U, V and P (UV; 0 ≤ U, V < N; 1 ≤ P ≤ 103), separated by single spaces, indicating the existence of a one-way route from U to V with distance P. There is at most one route from a given point U to a given point V, but notice that the existence of a route from U to V does not imply there is a route from V to U,
and, if such road exists, it can have a different length. The end of
input is indicated by a line containing only two zeros separated by a
single space.

Output

For each test case in the input, your program must print a single line, containing -1 if it is not possible to match the requirements, or an integer representing the length of the almost shortest path found.

Example

Input:
7 9
0 6
0 1 1
0 2 1
0 3 2
0 4 3
1 5 2
2 6 4
3 6 2
4 6 4
5 6 1
4 6
0 2
0 1 1
1 2 1
1 3 1
3 2 1
2 0 3
3 0 2
6 8
0 1
0 1 1
0 2 2
0 3 3
2 5 3
3 4 2
4 1 1
5 1 1
3 0 1
0 0 Output:
5
-1
6 题意是给出一个单向图,然后只要这条路径(S->D)的长度和最短路的长度一致,那么这条路上所有的边都删掉之后,再跑一次从S->D的最短路。
反向建边后跑两次dij,然后枚举所有边将属于最短路的边删掉。
 #include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define pii pair<int,int>
#define mp make_pair
struct Edge{
int u,v,w,next;
bool o;
}e1[],e2[];
int tot1,tot2,first1[],first2[];
void add1(int u,int v,int w){
e1[tot1].u=u;
e1[tot1].v=v;
e1[tot1].o=;
e1[tot1].w=w;
e1[tot1].next=first1[u];
first1[u]=tot1++;
}
void add2(int u,int v,int w){
e2[tot2].u=u;
e2[tot2].v=v;
e2[tot2].o=;
e2[tot2].w=w;
e2[tot2].next=first2[u];
first2[u]=tot2++;
}
int N,M,S,D,i,j,k;
bool vis[];
int d1[],d2[];
int dij(int S,int D,int d[],Edge e[],int first[]){
memset(d,inf,sizeof(int)*);
memset(vis,,sizeof(bool)*);
priority_queue<pii,vector<pii>,greater<pii> > q;
q.push(mp(,S));
d[S]=;
while(!q.empty()){
int u=q.top().second;
q.pop();
if(vis[u]) continue;
vis[u]=;
for(int i=first[u];i+;i=e[i].next){
if(e[i].o&&d[e[i].v]>d[u]+e[i].w){
d[e[i].v]=d[u]+e[i].w;
q.push(mp(d[e[i].v],e[i].v));
}
}
}
return d[D]==inf?-:d[D];
}
int main()
{
while(cin>>N>>M&&(N||M)){int u,v,w;
cin>>S>>D;
memset(first1,-,sizeof(first1));
memset(first2,-,sizeof(first2));
tot1=tot2=;
while(M--){
scanf("%d%d%d",&u,&v,&w);
add1(u,v,w);
add2(v,u,w);
}
int minn=dij(S,D,d1,e1,first1);
dij(D,S,d2,e2,first2);
for(i=;i<tot1;++i){
if(e1[i].w+d1[e1[i].u]+d2[e1[i].v]==minn) e1[i].o=;
}
cout<<dij(S,D,d1,e1,first1)<<endl;
}
return ;
}
 

spoj-SAMER08A-最短路的更多相关文章

  1. POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)

    POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...

  2. SPOJ OTOCI 动态树 LCT

    SPOJ OTOCI 裸的动态树问题. 回顾一下我们对树的认识. 最初,它是一个连通的无向的无环的图,然后我们发现由一个根出发进行BFS 会出现层次分明的树状图形. 然后根据树的递归和层次性质,我们得 ...

  3. bzoj1001--最大流转最短路

    http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...

  4. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  5. 【USACO 3.2】Sweet Butter(最短路)

    题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...

  6. Sicily 1031: Campus (最短路)

    这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...

  7. 最短路(Floyd)

    关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...

  8. SPOJ DQUERY D-query(主席树)

    题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...

  9. bzoj1266最短路+最小割

    本来写了spfa wa了 看到网上有人写Floyd过了 表示不开心 ̄へ ̄ 改成Floyd试试... 还是wa ヾ(。`Д´。)原来是建图错了(样例怎么过的) 结果T了 于是把Floyd改回spfa 还 ...

随机推荐

  1. [CentOS] 常用工具软件包

    gcc & g++ & gdb • 安装方法 yum install gcc -y yum install gcc-c++ -y         yum install gdb -y ...

  2. XDU 1031

    #include<stdio.h> #define maxn 1005 int c[maxn][maxn]; int gcd(int a,int b){ ?a:gcd(b,a%b); } ...

  3. splay伸展树模板

      普通版本: struct SplayTree { ; ], key[maxn], val[maxn], sz[maxn], lz[maxn], fa[maxn]; , ) { ch[x][]=ch ...

  4. 【android】开发笔记---存储篇

    SQLite批量插入数据 当我们执行 db.execSQL("sql语句")的时候,系统进行了一次IO操作,当批量插入成千上万条时,就会消耗掉许多资源. 解决之道是通过事务,统一提 ...

  5. Could not calculate build plan: Plugin org.apache.maven.plugins:maven-war-plugin:2.3

    Maven 导入项目时报错: Could not calculate build plan: Plugin org.apache.maven.plugins:maven-war-plugin:2.3 ...

  6. Java学习笔记之对象的复制和克隆

    假如说你想复制一个简单变量.很简单: int apples = 5; int pears = apples; 不仅仅是int类型,其它七种原始数据类型(boolean,char,byte,short, ...

  7. Python3.x:遍历select下拉框获取value值

    Python3.x:遍历select下拉框获取value值 Select提供了三种选择方法: # 通过选项的顺序,第一个为 0 select_by_index(index) # 通过value属性 s ...

  8. 20145109 实验四 Andoid开发基础

    安装Android 打开 默认程序中有helloworld 按下下图红框中的键: 遇到问题: 方法:修改build.gradle

  9. ASP.NET MVC 必备开发环境

    许多初学者为了搭建开发环境,很多软件找不齐,或者找不到的比较新而且稳定版本.所以我将下载和安装的资料整理了下,供大家下载.资料均收集于网络,但基本核实资料的可靠性,但不能完全保证.如果你在使用过程中发 ...

  10. Hive的执行生命周期

    1.入口$HIVE_HOME/bin/ext/cli.sh 调用org.apache.hadoop.hive.cli.CliDriver类进行初始化过程 处理-e,-f,-h等信息,如果是-h,打印提 ...