spoj-SAMER08A-最短路
SAMER08A - Almost Shortest Path
Finding the shortest path that goes from a starting point to a destination point given a set of points and route lengths connecting them is an already well known problem, and it's even part of our daily lives, as shortest path programs are widely available nowadays.
Most people usually like very much these applications as they make their lives easier. Well, maybe not that much easier.
Now that almost everyone can have access to GPS navigation devices able
to calculate shortest paths, most routes that form the shortest path
are getting slower because of heavy traffic. As most people try to
follow the same path, it's not worth it anymore to follow these
directions.
With this in his mind, your boss asks you to develop
a new application that only he will have access to, thus saving him
time whenever he has a meeting or any urgent event. He asks you that the
program must answer not the shortest path, but the almost shortest
path. He defines the almost shortest path as the shortest path that goes
from a starting point to a destination point such that no route between
two consecutive points belongs to any shortest path from the starting
point to the destination.
For example, suppose the figure below
represents the map given, with circles representing location points, and
lines representing direct, one-way routes with lengths indicated. The
starting point is marked as S and the destination point is marked as D.
The bold lines belong to a shortest path (in this case there are two
shortest paths, each with total length 4). Thus, the almost shortest
path would be the one indicated by dashed lines (total length 5), as no
route between two consecutive points belongs to any shortest path.
Notice that there could exist more than one possible answer, for
instance if the route with length 3 had length 1. There could exist no
possible answer as well.

Input
The input contains several test cases. The first line of a test case contains two integers N (2 ≤ N ≤ 500) and M (1 ≤ M ≤ 104),
separated by a single space, indicating respectively the number of
points in the map and the number of existing one-way routes connecting
two points directly. Each point is identified by an integer between 0
and N -1. The second line contains two integers S and D, separated by a single space, indicating respectively the starting and the destination points (S ≠ D; 0 ≤ S, D < N).
Each one of the following M lines contains three integers U, V and P (U ≠ V; 0 ≤ U, V < N; 1 ≤ P ≤ 103), separated by single spaces, indicating the existence of a one-way route from U to V with distance P. There is at most one route from a given point U to a given point V, but notice that the existence of a route from U to V does not imply there is a route from V to U,
and, if such road exists, it can have a different length. The end of
input is indicated by a line containing only two zeros separated by a
single space.
Output
For each test case in the input, your program must print a single line, containing -1 if it is not possible to match the requirements, or an integer representing the length of the almost shortest path found.
Example
Input:
7 9
0 6
0 1 1
0 2 1
0 3 2
0 4 3
1 5 2
2 6 4
3 6 2
4 6 4
5 6 1
4 6
0 2
0 1 1
1 2 1
1 3 1
3 2 1
2 0 3
3 0 2
6 8
0 1
0 1 1
0 2 2
0 3 3
2 5 3
3 4 2
4 1 1
5 1 1
3 0 1
0 0 Output:
5
-1
6 题意是给出一个单向图,然后只要这条路径(S->D)的长度和最短路的长度一致,那么这条路上所有的边都删掉之后,再跑一次从S->D的最短路。
反向建边后跑两次dij,然后枚举所有边将属于最短路的边删掉。
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define pii pair<int,int>
#define mp make_pair
struct Edge{
int u,v,w,next;
bool o;
}e1[],e2[];
int tot1,tot2,first1[],first2[];
void add1(int u,int v,int w){
e1[tot1].u=u;
e1[tot1].v=v;
e1[tot1].o=;
e1[tot1].w=w;
e1[tot1].next=first1[u];
first1[u]=tot1++;
}
void add2(int u,int v,int w){
e2[tot2].u=u;
e2[tot2].v=v;
e2[tot2].o=;
e2[tot2].w=w;
e2[tot2].next=first2[u];
first2[u]=tot2++;
}
int N,M,S,D,i,j,k;
bool vis[];
int d1[],d2[];
int dij(int S,int D,int d[],Edge e[],int first[]){
memset(d,inf,sizeof(int)*);
memset(vis,,sizeof(bool)*);
priority_queue<pii,vector<pii>,greater<pii> > q;
q.push(mp(,S));
d[S]=;
while(!q.empty()){
int u=q.top().second;
q.pop();
if(vis[u]) continue;
vis[u]=;
for(int i=first[u];i+;i=e[i].next){
if(e[i].o&&d[e[i].v]>d[u]+e[i].w){
d[e[i].v]=d[u]+e[i].w;
q.push(mp(d[e[i].v],e[i].v));
}
}
}
return d[D]==inf?-:d[D];
}
int main()
{
while(cin>>N>>M&&(N||M)){int u,v,w;
cin>>S>>D;
memset(first1,-,sizeof(first1));
memset(first2,-,sizeof(first2));
tot1=tot2=;
while(M--){
scanf("%d%d%d",&u,&v,&w);
add1(u,v,w);
add2(v,u,w);
}
int minn=dij(S,D,d1,e1,first1);
dij(D,S,d2,e2,first2);
for(i=;i<tot1;++i){
if(e1[i].w+d1[e1[i].u]+d2[e1[i].v]==minn) e1[i].o=;
}
cout<<dij(S,D,d1,e1,first1)<<endl;
}
return ;
}
spoj-SAMER08A-最短路的更多相关文章
- POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)
POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...
- SPOJ OTOCI 动态树 LCT
SPOJ OTOCI 裸的动态树问题. 回顾一下我们对树的认识. 最初,它是一个连通的无向的无环的图,然后我们发现由一个根出发进行BFS 会出现层次分明的树状图形. 然后根据树的递归和层次性质,我们得 ...
- bzoj1001--最大流转最短路
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- 【USACO 3.2】Sweet Butter(最短路)
题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...
- Sicily 1031: Campus (最短路)
这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...
- 最短路(Floyd)
关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...
- SPOJ DQUERY D-query(主席树)
题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...
- bzoj1266最短路+最小割
本来写了spfa wa了 看到网上有人写Floyd过了 表示不开心 ̄へ ̄ 改成Floyd试试... 还是wa ヾ(。`Д´。)原来是建图错了(样例怎么过的) 结果T了 于是把Floyd改回spfa 还 ...
随机推荐
- python 之操作mysql 数据库实例
对于python操作mysql 数据库,具体的步骤应为: 1. 连接上mysql host 端口号 数据库 账号 密码2. 建立游标3. 执行sql(注意,如果是update,insert,delet ...
- appium 底层原理
appium的log详细分析http://blog.csdn.net/jffhy2017/article/details/69372064----------------------很多appium架 ...
- php array_mutisort
PHP中array_multisort可以用来一次对多个数组进行排序,或者根据某一维或多维对多维数组进行排序. 关联(string)键名保持不变,但数字键名会被重新索引. 输入数组被当成一个表的列并以 ...
- Loadrunner自带协议分析工具:Protocol Advisor
录制脚本之前,选对协议很关键,否则错误的协议会导致Virtual User Generator 录制不到脚本,或录制的脚本不完整,有些应用可能需要选择多个协议才能完整的记录 客户端与服务器端的请求. ...
- 【android】开发笔记系列UI篇
弹出View添加阴影效果 系统自带就有,在android studio上直接写入背景颜色 android:background="@android:drawable/dialog_holo_ ...
- C++基础---结构体(struct)
转自:http://blog.csdn.net/cainv89/article/details/48447225 1. 结构体(struct) 1.1 结构体的概念 结构体(struct):是由一系列 ...
- Docker入门简明教程
Docker简介 概念 Docker是基于Go语言实现的云开源项目,是基于Linux的多项开源技术提供高效.敏捷和轻量级的容器方案.创建于2013年初.自从开源后就受到了广泛的关注,从长远的眼光来看, ...
- String类型 在底层剖析,并比较 与StringBuilding 的区别
1.string和 stringbuilder的区别: String在任何语言中,都有它的特殊性,在.NET中也是如此.它属于基本数据类型,也是基本数据类型中唯一的引用类型.字符串可以声明为常量,但是 ...
- 根据iframe获取window
今天使用layui弹出窗口,需要将函数写在弹出的窗口,但是按钮事件是在父层窗口绑定的,这样就要在父层窗口调用子层窗口的函数. 子层函数与父层函数 function topup() { console. ...
- kali安装机场v2ray客户端
为了方便查找资料,之前安装的ssr在kali上面,感觉速度不怎么快,相比windows和android上慢很多,所以打算在kali上面装个机场试试,看官方介绍说机场比ssr速度更快,下面是安装步骤: ...