SAMER08A - Almost Shortest Path

Finding the shortest path that goes from a starting point to a destination point given a set of points and route lengths connecting them is an already well known problem, and it's even part of our daily lives, as shortest path programs are widely available nowadays.

Most people usually like very much these applications as they make their lives easier. Well, maybe not that much easier.

Now that almost everyone can have access to GPS navigation devices able
to calculate shortest paths, most routes that form the shortest path
are getting slower because of heavy traffic. As most people try to
follow the same path, it's not worth it anymore to follow these
directions.

With this in his mind, your boss asks you to develop
a new application that only he will have access to, thus saving him
time whenever he has a meeting or any urgent event. He asks you that the
program must answer not the shortest path, but the almost shortest
path. He defines the almost shortest path as the shortest path that goes
from a starting point to a destination point such that no route between
two consecutive points belongs to any shortest path from the starting
point to the destination.

For example, suppose the figure below
represents the map given, with circles representing location points, and
lines representing direct, one-way routes with lengths indicated. The
starting point is marked as S and the destination point is marked as D.
The bold lines belong to a shortest path (in this case there are two
shortest paths, each with total length 4). Thus, the almost shortest
path would be the one indicated by dashed lines (total length 5), as no
route between two consecutive points belongs to any shortest path.
Notice that there could exist more than one possible answer, for
instance if the route with length 3 had length 1. There could exist no
possible answer as well.

Input

The input contains several test cases. The first line of a test case contains two integers N (2 ≤ N ≤ 500) and M (1 ≤ M ≤ 104),
separated by a single space, indicating respectively the number of
points in the map and the number of existing one-way routes connecting
two points directly. Each point is identified by an integer between 0
and N -1. The second line contains two integers S and D, separated by a single space, indicating respectively the starting and the destination points (SD; 0 ≤ S, D < N).

Each one of the following M lines contains three integers U, V and P (UV; 0 ≤ U, V < N; 1 ≤ P ≤ 103), separated by single spaces, indicating the existence of a one-way route from U to V with distance P. There is at most one route from a given point U to a given point V, but notice that the existence of a route from U to V does not imply there is a route from V to U,
and, if such road exists, it can have a different length. The end of
input is indicated by a line containing only two zeros separated by a
single space.

Output

For each test case in the input, your program must print a single line, containing -1 if it is not possible to match the requirements, or an integer representing the length of the almost shortest path found.

Example

Input:
7 9
0 6
0 1 1
0 2 1
0 3 2
0 4 3
1 5 2
2 6 4
3 6 2
4 6 4
5 6 1
4 6
0 2
0 1 1
1 2 1
1 3 1
3 2 1
2 0 3
3 0 2
6 8
0 1
0 1 1
0 2 2
0 3 3
2 5 3
3 4 2
4 1 1
5 1 1
3 0 1
0 0 Output:
5
-1
6 题意是给出一个单向图,然后只要这条路径(S->D)的长度和最短路的长度一致,那么这条路上所有的边都删掉之后,再跑一次从S->D的最短路。
反向建边后跑两次dij,然后枚举所有边将属于最短路的边删掉。
 #include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define pii pair<int,int>
#define mp make_pair
struct Edge{
int u,v,w,next;
bool o;
}e1[],e2[];
int tot1,tot2,first1[],first2[];
void add1(int u,int v,int w){
e1[tot1].u=u;
e1[tot1].v=v;
e1[tot1].o=;
e1[tot1].w=w;
e1[tot1].next=first1[u];
first1[u]=tot1++;
}
void add2(int u,int v,int w){
e2[tot2].u=u;
e2[tot2].v=v;
e2[tot2].o=;
e2[tot2].w=w;
e2[tot2].next=first2[u];
first2[u]=tot2++;
}
int N,M,S,D,i,j,k;
bool vis[];
int d1[],d2[];
int dij(int S,int D,int d[],Edge e[],int first[]){
memset(d,inf,sizeof(int)*);
memset(vis,,sizeof(bool)*);
priority_queue<pii,vector<pii>,greater<pii> > q;
q.push(mp(,S));
d[S]=;
while(!q.empty()){
int u=q.top().second;
q.pop();
if(vis[u]) continue;
vis[u]=;
for(int i=first[u];i+;i=e[i].next){
if(e[i].o&&d[e[i].v]>d[u]+e[i].w){
d[e[i].v]=d[u]+e[i].w;
q.push(mp(d[e[i].v],e[i].v));
}
}
}
return d[D]==inf?-:d[D];
}
int main()
{
while(cin>>N>>M&&(N||M)){int u,v,w;
cin>>S>>D;
memset(first1,-,sizeof(first1));
memset(first2,-,sizeof(first2));
tot1=tot2=;
while(M--){
scanf("%d%d%d",&u,&v,&w);
add1(u,v,w);
add2(v,u,w);
}
int minn=dij(S,D,d1,e1,first1);
dij(D,S,d2,e2,first2);
for(i=;i<tot1;++i){
if(e1[i].w+d1[e1[i].u]+d2[e1[i].v]==minn) e1[i].o=;
}
cout<<dij(S,D,d1,e1,first1)<<endl;
}
return ;
}
 

spoj-SAMER08A-最短路的更多相关文章

  1. POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)

    POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...

  2. SPOJ OTOCI 动态树 LCT

    SPOJ OTOCI 裸的动态树问题. 回顾一下我们对树的认识. 最初,它是一个连通的无向的无环的图,然后我们发现由一个根出发进行BFS 会出现层次分明的树状图形. 然后根据树的递归和层次性质,我们得 ...

  3. bzoj1001--最大流转最短路

    http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...

  4. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  5. 【USACO 3.2】Sweet Butter(最短路)

    题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...

  6. Sicily 1031: Campus (最短路)

    这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...

  7. 最短路(Floyd)

    关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...

  8. SPOJ DQUERY D-query(主席树)

    题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...

  9. bzoj1266最短路+最小割

    本来写了spfa wa了 看到网上有人写Floyd过了 表示不开心 ̄へ ̄ 改成Floyd试试... 还是wa ヾ(。`Д´。)原来是建图错了(样例怎么过的) 结果T了 于是把Floyd改回spfa 还 ...

随机推荐

  1. jQuery对象和DOM对象之间的转换

    jQuery对象不能使用DOM对象的任何方法,DOM对象也不能使用jQuery对象的任何方法.在需要使用时需要对其进行转换. jQuery对象前使用"$",这不是必须的,不这么使用 ...

  2. [笔记] Ubuntu 18.04源码编译安装OpenCV 4.0流程

    标准常规安装方法安装的OpenCV版本比较低,想尝鲜使用4.0版本,只好源码安装. 安装环境 OS:Ubuntu 18.04 64 bit 显卡:NVidia GTX 1080 CUDA:10.0 c ...

  3. MySQL 温故知心(三)

    MySQL锁概述 相对其他数据库而言,MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制.比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level loc ...

  4. centos7 最小化安装后的配置优化

    echo #CENTOS7echo #1.最小化安装之后需要做的事echo 2.配置echo 2.1 安装网络yum install net-tools -y echo 2.2 更新机器名echo h ...

  5. json转List、Map

    import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.Li ...

  6. Java设计模式之模板方法模式(Template Method)

    一.含义 定义一个算法中的操作框架,而将一些步骤延迟到子类中.使得子类可以不改变算法的结构即可重定义该算法的某些特定步骤,不同的子类可以以不同的方式实现这些抽象方法,从而对剩余的逻辑有不同的实现. 二 ...

  7. LNMP环境简单教程

    一:LNMP可以进行简单优化,主要2方面.NGINX和PHP进程数,分别是以下2个文件: 1. /usr/local/nginx/conf/nginx.conf2. /usr/local/php/et ...

  8. git的应用

    对git的应用 (终于第一次用会git) 根据胡东晖同学的博客(使用git推送代码到开源中国以及IDEA环境下使用git)与热心指导,自己跟着做了,虽然途中出了很多很多问题,但是好在最后还是成功了!! ...

  9. getJson同步

    $.ajaxSettings.async = false;//在执行之前加$.ajaxSettings.async = false;  (同步执行)  function get_no_order_ar ...

  10. this 的理解

    function foo(num){ console.log("foo:",+num); this.count++}foo.count =0for (var i=0; i<1 ...