一开始暴搜,超时3个点...

后来看了题解:

首先,两个点的距离为2当且仅当它们都与一个点直接相连

反过来说,一个点所有的出边的终点都是互相距离2的(最大值可以依靠这个方法,前向星处理的时候将每个点的最大出点和次大出点存起来,最后过一遍比较乘积)

那么,所有点对的权值和就是每一个点所产生的点对权值和的总和

但此时,如若要对每一个点的出点进行两两配对,每一个点需要O(e^2)(e为该点出度)

只要有一个点有太多的出边就会TLE,此时我们我可以利用乘法分配律

w[i]*w[j1]+w[i]*w[j2]+...+w[i]*w[jn]=w[i]*(w[j1]+...+w[jn])

我们定义一个点的围权和为到该点距离为1的点的权值和

从这个式子中,我们可以看见:i点所产生的权值和,相当于是与i点直接相连的那些点中(j1,j2,j3...),每个点(j1,j2,j3)的围权和的和,每个围权和减去自己本身,再乘以该点权值

再利用前向星存储,这样时间复杂度会直接降到O(n)

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define Size 200005
using namespace std; int IN[Size][]; struct node{
int to;
int next;
}edge[Size*];
int head[Size]; int n;
int w[Size];
long long sum=; int largest=-;
int L[Size][];
long long d[Size]; void check(int a,int b){
int ww=w[b];
if(ww>L[a][]){
L[a][]=L[a][];
L[a][]=ww;
}else if(ww>L[a][])L[a][]=ww;
} int main(){
memset(head,-,sizeof(head));
freopen("3728.in","r",stdin); cin>>n;
int a,b;
for(int i=;i<n;i++)scanf("%d%d",&IN[i][],&IN[i][]);
for(int i=;i<=n;i++)scanf("%d",w+i);
for(int i=;i<n;i++){
a=IN[i][]; b=IN[i][];
edge[i*-].to=b; edge[i*-].next=head[a]; head[a]=*i-;
check(a,b); d[a]+=w[b];
edge[i*].to=a; edge[i*].next=head[b]; head[b]=*i;
check(b,a); d[b]+=w[a];
} for(int i=;i<=n;i++){
largest=max(largest,L[i][]*L[i][]);
}
for(int i=;i<=n;i++){
for(int j=head[i];j!=-;j=edge[j].next){
int x=edge[j].to;
sum+=(w[x]*(d[i]-w[x])%)%;
sum%=;
}
} cout<<largest<<' '<<sum<<endl; return ;
}

code3728 联合权值的更多相关文章

  1. Codevs 3728 联合权值

    问题描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每 条边的长度均为1.图上两点(u,v)的距离定义为u点到v点的最短距离.对于图G上的点 对(u,v),若它 ...

  2. P1906联合权值

    描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离. ...

  3. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  4. NOIp 2014 #2 联合权值 Label:图论 !!!未AC

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  5. 【洛谷P1351】联合权值

    我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include< ...

  6. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  7. NOIP2014 联合权值

    2.联合权值 (link.cpp/c/pas) [问题描述] 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi  ,每条边的长度均为1.图上两点(u, v)的距离定义为u ...

  8. NOIP2014提高组第二题联合权值

    还是先看题吧: 试题描述  无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi ,每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 ...

  9. 【NOIP2014提高组】联合权值

    https://www.luogu.org/problem/show?pid=1351 既然是一棵树,就先转化成有根树.有根树上距离为2的点对,路径可能长下面这样: 枚举路径上的中间点X. 第一种情况 ...

随机推荐

  1. 在不适用fixed的前提下,当内容较少时footer固定在页面底部

    使用css,参考国外的一个解决方法: http://ryanfait.com/resources/footer-stick-to-bottom-of-page/ How to use the CSS ...

  2. [转]MySQL 经验集

    -- my.ini -> 在 [mysqld] 节点下加入一行 skip-grant-tables 然后重启服务 -- 接下来无密码登录到 mysql 执行以下命令 use mysql show ...

  3. C++ cosnt的一点总结

    1,C++在定义函数重载的时候形参不管是不是const的他们都是等价的,除非形参是const引用.举个例子: void fun(int a){...}与void fun(const int a){.. ...

  4. 阶段性总结(PHP-Session)

    PHP Session PHP session 变量用于存储关于用户会话(session)的信息,或者更改用户会话(session)的设置.Session 变量存储单一用户的信息,并且对于应用程序中的 ...

  5. socket链接循环

    server------------------------#!/usr/bin/env python # encoding: utf-8  # Date: 2018/6/5 import socke ...

  6. 脱壳系列(四) - eXPressor 壳

    先用 PEiD 查一下壳 用 OD 载入程序 这里有一串字符串,是壳的名称和版本号 按 Alt+M 显示内存窗口 这里只有三个区段,后面两个是壳生成的,程序的代码段也包含在里面 利用堆栈平衡 按 F8 ...

  7. html中的响应式图片

    html中的响应式图片 img sizes 指定屏幕尺寸 srcset 指定可以使用的图片和大小,多个使用逗号分隔,需要指定图片的真实宽度,个人觉得没有picture好用 <img sizes= ...

  8. VMware Workstation 12 Pro(安装CentOS7)

    之前安装了一版 Ubuntu 14.04版本,发现蛮不好用的,果断放弃,换上CentOS7版本(在远程服务器上的安装方式除了网络设置有差异,基本相同) VMware Workstation 12 Pr ...

  9. 呕心沥血Android studio使用JNI实例

    发现网上很多JNI的使用教程,也很详细,不过有的地方有些缺漏,导致很多小问题难以解决的,今天就来总结一下. 准备工作:下载NDK. 简单的说,要用到C/C++,就要用NDK.直接百度搜索然后去官网下载 ...

  10. 前端Blob对象的使用

    最近移动端界面给后台传数据时用到Blob,它可以看做是存放二进制数据的容器: //上传图片数据封装 function uploadPhotoData(data,fileName){ var imgAr ...