N-Gram的数据结构
ARPA的n-gram语法如下:
[html] view plaincopyprint?
\data\
ngram 1=64000
ngram 2=522530
ngram 3=173445
\1-grams:
-5.24036 'cause -0.2084827
-4.675221 'em -0.221857
-4.989297 'n -0.05809768
-5.365303 'til -0.1855581
-2.111539 </s> 0.0
-99 <s> -0.7736475
-1.128404 <unk> -0.8049794
-2.271447 a -0.6163939
-5.174762 a's -0.03869072
-3.384722 a. -0.1877073
-5.789208 a.'s 0.0
-6.000091 aachen 0.0
-4.707208 aaron -0.2046838
-5.580914 aaron's -0.06230035
-5.789208 aarons -0.07077657
-5.881973 aaronson -0.2173971
具体说明见 :ARPA的n-gram语言模型格式
整个ARPA-LM由很多个n-gram项组成,分别说明这两个的数据结构
一,n-gram数据结构
n-gram的数据结构如下:
typedef struct
{
real log_prob ;
real log_bo ;
int *words ;
} ARPALMEntry ;
words,表示当前的n-gram所涉及的单词,如果是1-gram,那就只有一个,如果是2-gram,那么words就包括这两个单词的序号。
log_bo,表示ngram的回退概率。
log_prob,表示ngram的组合概率。
二,ARPA-LM数据结构
多个项组成的整个n-gram语言模型的数据结构如下:
[cpp] view plaincopyprint?
class ARPALM
{
public:
Vocabulary *vocab ;
int order ;
ARPALMEntry **entries ; // 语言模型的所有项,组成一个数组
int *n_ngrams ; // 一元语言模型、二元语言模型、三元语言模型等组成的数组,数组每一项都表示对应的的元有多少个。
char *unk_wrd ; // 词典中不在语言模型中的词。
int unk_id ;// 词典中不在语言模型中的词ID,这个ID指定为词典的最后一个序号。
int n_unk_words ;
int *unk_words ;
private:
bool *words_in_lm ; // 布尔类型数组,标识词是否在语言模型中。
}
vocab,用于构建语言模型的词典指针。词典定义见:词典内存存储模型
entries,语言模型的所有ngram项,是ARPALMEntry类型的一个二维数组。entries[0]存储1-gram,entries[1]存储2-gram,依此类推。
n_ngrams,整型数组,依次包含1-gram,2-gram,3-gram,....所包含的ngram项个数。
unk_wrd,词典中可以不在语言模型中的词。
unk_id,词典中可以不在语言模型中的词的ID,这个ID指定为词典的最后一个词序号。
n_unk_words,在读语言模型之后,统计在词典中,但没有用来建立语言模型的词个数,如果没有指定unk_wrd的话,是不允许的,就表示所有的词典中的词都应该用来建语言模型。
unk_words,存储6中统计的词序号。
words_in_lm,这个标识词典中的词是否在语言模型中出现。
N-Gram的数据结构的更多相关文章
- 多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类)
前言:刚学习了一段机器学习,最近需要重构一个java项目,又赶过来看java.大多是线程代码,没办法,那时候总觉得多线程是个很难的部分很少用到,所以一直没下决定去啃,那些年留下的坑,总是得自己跳进去填 ...
- 一起学 Java(三) 集合框架、数据结构、泛型
一.Java 集合框架 集合框架是一个用来代表和操纵集合的统一架构.所有的集合框架都包含如下内容: 接口:是代表集合的抽象数据类型.接口允许集合独立操纵其代表的细节.在面向对象的语言,接口通常形成一个 ...
- 深入浅出Redis-redis底层数据结构(上)
1.概述 相信使用过Redis 的各位同学都很清楚,Redis 是一个基于键值对(key-value)的分布式存储系统,与Memcached类似,却优于Memcached的一个高性能的key-valu ...
- 算法与数据结构(十五) 归并排序(Swift 3.0版)
上篇博客我们主要聊了堆排序的相关内容,本篇博客,我们就来聊一下归并排序的相关内容.归并排序主要用了分治法的思想,在归并排序中,将我们需要排序的数组进行拆分,将其拆分的足够小.当拆分的数组中只有一个元素 ...
- 算法与数据结构(十三) 冒泡排序、插入排序、希尔排序、选择排序(Swift3.0版)
本篇博客中的代码实现依然采用Swift3.0来实现.在前几篇博客连续的介绍了关于查找的相关内容, 大约包括线性数据结构的顺序查找.折半查找.插值查找.Fibonacci查找,还包括数结构的二叉排序树以 ...
- 算法与数据结构(九) 查找表的顺序查找、折半查找、插值查找以及Fibonacci查找
今天这篇博客就聊聊几种常见的查找算法,当然本篇博客只是涉及了部分查找算法,接下来的几篇博客中都将会介绍关于查找的相关内容.本篇博客主要介绍查找表的顺序查找.折半查找.插值查找以及Fibonacci查找 ...
- 算法与数据结构(八) AOV网的关键路径
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 掌握javascript中的最基础数据结构-----数组
这是一篇<数据结构与算法javascript描述>的读书笔记.主要梳理了关于数组的知识.部分内容及源码来自原作. 书中第一章介绍了如何配置javascript运行环境:javascript ...
- [数据结构]——链表(list)、队列(queue)和栈(stack)
在前面几篇博文中曾经提到链表(list).队列(queue)和(stack),为了更加系统化,这里统一介绍着三种数据结构及相应实现. 1)链表 首先回想一下基本的数据类型,当需要存储多个相同类型的数据 ...
随机推荐
- node操作mongoDB数据库的最基本例子
连接数据库 var mongo=require("mongodb"); var host="localhost"; var port=mongo.Connect ...
- SQL Server Management Studio (SSMS)
最新的SQLServer数据库已经不集成SQL Server Management Studio需要单独下载安装. https://docs.microsoft.com/zh-cn/sql/ssms/ ...
- 修改tomcat端口后不能IP访问问题
当tomcat端口被修改以后使用IP访问会发生404的问题,只能通过localhost进行访问,当别人想访问你tomcat下的工程时就会访问失败,此时修改eclipse下的tomcat中的server ...
- php对业务平台接口调用的封装格式
1.封装类示例:E:\html\pim\php_mcloud_cas\util\UmcPlatform.class.php <?php class Util_UmcPlatform{ const ...
- python开发_function annotations
在看python的API的时候,发现了一个有趣的东东,即:python的方法(函数)注解(Function Annotation) 原文: 4.7.7. Function Annotations Fu ...
- 神奇的make自动生成include file的功能
嗯,今天研究公司makefile的代码,始终搞不明白有一段下载编译依赖的rule recipe(对这个名词不了解请参考make的官方文档)是怎么执行的.明明在执行的时候并指定的target并没有依赖那 ...
- Windbg基本命令应用总结
.cordll -ve -u -l //reload core dlls ------加载下载系统文件符号的URL---------- .sympath SRV*C:\Symbols*http://m ...
- Halcon学习之三:有关图像通道的函数(R是三通道,B是1通道,G二通道),排列顺序BGR
黑白摄像机会返回每个像素所对应的能量采用结果,这些结果组成了一幅单通道灰度值图像,而对于RGB彩色摄像机,它将返回每个像素所对应的三个采样结果,也就是一幅三通道图像.下面这些是与图像通道有关的函数: ...
- RabbitMQ双活实践(转)
有货RabbitMQ双活实践 消息服务中间件在日常工作中用途很多,如业务之间的解耦,其中 RabbitMQ 是比较容易上手且企业使用比较广泛的一种,本文主要介绍有货在使用 RabbitMQ 的一些 ...
- Shell32.ShellClass服务器操作系统无法获取 音频文件时长问题
前言: 上传音频文件,自动写入此音频文件的时长,这里用 COM组件Microsoft Shell Controls And Automation来实现. 首先 1.引用:Microsoft Shell ...