————————————————————————————————————

写在开头:此文参照莫烦python教程(墙裂推荐!!!)

————————————————————————————————————

  • 这个实验的内容是:基于TensorFlow,实现手写数字的识别。
  • 这里用到的数据集是大家熟知的mnist数据集。
  • mnist有五万多张手写数字的图片,每个图片用28x28的像素矩阵表示。所以我们的输入层每个案列的特征个数就有28x28=784个;因为数字有0,1,2…9共十个,所以我们的输出层是个1x10的向量。输出层是十个小于1的非负数,表示该预测是0,1,2…9的概率,我们选取最大概率所对应的数字作为我们的最终预测。
  • 真实的数字表示为该数字所对应的位置为1,其余位置为0的1x10的向量。

下面直接贴代码,解释和笔记都在注释上了!!

#卷积神经网络(cnn)

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #导入数据
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)#如果还没下载mnist就下载 #定义计算正确率的函数
def t_accuracy(t_xs,t_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:t_xs})
correct_pre = tf.equal(tf.argmax(y_pre,1),tf.argmax(t_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_pre,tf.float32))
result = sess.run(accuracy,feed_dict={xs:t_xs,ys:t_ys})
return result #定义权重
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial) #定义偏置
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial) #定义卷积神经网络层
def conv2d(x,W):
#strides[1,x_,y_,1]
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') #x,y,z方向的跨度都为1 #定义pooling
def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#strides[0]=strides[3]=1 #定义神经网络的输入值和输出值
xs = tf.placeholder(tf.float32,[None,784]) #None是不规定大小,这里指的是案例个数,而输入特征个数为28x28 = 784
ys = tf.placeholder(tf.float32,[None,10]) #Nnoe也是案例个数,不做规定;10是因为有10个数字,所以输出是10
#keep_prob = tf.placeholder(tf.float32) #dropout
x_image = tf.reshape(xs,[-1,28,28,1])#-1:把所有图片的维度丢到一边不管;28,28是像素,1是维度,因为这里的图片是黑白的。输出为[n_samoles,28,28,1] #定义第一层卷积层
W_conv1 = weight_variable([5,5,1,32]) #patch5x5,in_size(单位) 1,out_size(高度) 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1) #输出格式28x28x32
h_pool1 = max_pool_2x2(h_conv1) #输出为14x14x32 #定义第二层卷积层
W_conv2 = weight_variable([5,5,32,64]) #patch5x5,in_size(单位) 32,out_size(高度) 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2) #输出格式14x14x64
h_pool2 = max_pool_2x2(h_conv2) #输出为7x7x64 #定义第一层全连接网络层
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
#将h_pool2展平
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1_drop = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
#h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #定义第二层全连接网络层
W_fc2=weight_variable([1024,10]) #因为有10个数字,所以输出10个
b_fc2=bias_variable([10]) #因为有十个数字,所以输出10个
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) #进行分类 #计算误差
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) #此误差计算方式和softmax配套用,效果好 #训练
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #开始训练
sess = tf.Session()
sess.run(tf.global_variables_initializer()) for i in range(2000):
batch_xs,batch_ys = mnist.train.next_batch(100) #提取数据集的100个数据,因为原来数据太大了
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%200 == 0:
print (t_accuracy(mnist.test.images,mnist.test.labels)) #每隔50个,打印一下正确率。注意:这里是要用test的数据来测试
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
0.0993
0.9236
0.956
0.9626
0.97
0.9742
0.9778
0.9725
0.9796
0.9826

由于是在装有强劲的显卡的台式机上运行的,所以几秒就出结果了,看得也是畅快!!训练了2000次,效果就有98.26%了,算不错吧?

6 TensorFlow实现cnn识别手写数字的更多相关文章

  1. 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)

    上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...

  2. 3 TensorFlow入门之识别手写数字

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  3. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  4. 学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

    TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology ...

  5. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  6. 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

    笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...

  7. 如何用卷积神经网络CNN识别手写数字集?

    前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...

  8. 使用神经网络来识别手写数字【译】(三)- 用Python代码实现

    实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNI ...

  9. python手写神经网络实现识别手写数字

    写在开头:这个实验和matlab手写神经网络实现识别手写数字一样. 实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手 ...

随机推荐

  1. Mongodb的性能优化问题

    摘要 数据库性能对软件整体性能有着至关重要的影响,对于Mongodb数据库常用的性能优化方法主要有: 范式化与反范式化: 填充因子的使用: 索引的使用: 一. 范式化与反范式化 范式是为了消除重复数据 ...

  2. 【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么 ...

  3. 纪念伟大的sb错-noip滚粗

    人弱就是弱,被sb错虐翻. 手一抖一生就毁了 开此博文纪念这个伟大的sb错! noip2014 d2t2逆bfs后删点手残没考虑后效性,完美爆80 愿省选rp++,求进noi,orz

  4. freemarker1 一些内建函数和用法

    ${"   green mouse"?cap_first} -->   Green mouse  //字符串中的第一个单词的首字母大写 ${"ABCDF" ...

  5. VC++ Splash Window封装类CSplash

    Splash.h 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 ...

  6. css图标

    一.介绍 采用这种字体,我们可以避免网站制作中采用好多图片,一方面解决了浏览器的兼容性问题.另一方面,这些字体都是矢量字体,我们只要在调整这些图标时,将他们的字体大小以及颜色,我们就可以解决很多不是图 ...

  7. print多重打印

    遇见有趣的问题必须记录下来,当时的想法思路也要记下来 以下两行代码打印出来的结果会是什么 print('2 * 3 = %d' % (2 * 3)) print('2 * 3 = %d' % 2 * ...

  8. redis的简单操作

    今天在代码中使用hset存入redis中:jedis.hset(key.getBytes(), field.getBytes(), ObjectInfoPojo); 需要在redis中去验证数据是否存 ...

  9. 递归删除资源树 Ztree

    前言 最近项目里有这么一个需求:现在有一个用Ztree编写的资源树,当删除资源树的某个节点时,则将此节点下面的所有节点全部删除,这里显然就用到了递归:若此节点被删除后无其它的兄弟节点了,我们还需要将其 ...

  10. 2D绘图引擎比较

    这个问题很普遍.最近在研究这个问题,在网上搜了一些资料,再结合自己的经验,谈谈自己的一些想法. 一.双缓存能提高绘图效率吗? 网上有篇文章:绘图效率完整解决方案——三种手段提高GDI/GDI+绘图效率 ...