一、时间序列是什么

时间序列在多个时间点观察或测量到的任何事物,很多都是固定频率出现 的,比如每15秒、每5分钟、每月。

padnas提供了一组标准的时间序列处理工具和数据算法,基本的时间序列类型是以时间戳为索引的Series。

当创建一个带有DatetimeIndex的Series时,pandas就会知道对象是一个时间序列,用Numpy的datetime64数据以纳秒形式存储时间。

dates=[
datetime(2020,1,2),datetime(2020,1,5),datetime(2020,1,7),
datetime(2020,1,8),datetime(2020,1,10),datetime(2020,1,12)
]
ts=pd.Series(np.random.randn(6),index=dates)
ts
2020-01-02 -0.140776
2020-01-05 0.185088
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
2020-01-12 -0.259721
dtype: float64 ts.index
DatetimeIndex(['2020-01-02', '2020-01-05', '2020-01-07', '2020-01-08',
'2020-01-10', '2020-01-12'],
dtype='datetime64[ns]', freq=None) ts.index.dtype
dtype('<M8[ns]')

二、时间序列的选取-时间字符串/at_time/between_time/asof

1.传入一个可以被解释为日期的字符串

ts['1/10/2020']
-0.3216128833894315
ts['2020-01-02']
0.47508960825683716 #也可以只传入年或月
longer_ts['2021']
2021-01-01 1.596179
2021-01-02 -0.458160
2021-01-03 1.380482
...
2021-12-29 0.343524
2021-12-30 0.040584
2021-12-31 -1.616620
Freq: D, Length: 365, dtype: float64 #通过日期进行切片
ts[datetime(2020,1,7):]
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
2020-01-12 -0.259721
dtype: float64 ts['1/6/2020':'1/11/2020']
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
dtype: float64

2.通过at_time获取指定时间点

# 生成一个交易日内的日期范围和时间序列,以分为纬度
rng=pd.date_range('2020-06-01 09:30','2020-06-01 15:59',freq='T')
#生成5天的时间点
rng=rng.append([rng+pd.offsets.BDay(i) for i in range(1,4)])
ts=pd.Series(np.arange(len(rng),dtype=float),index=rng)

#抽取指定时间点:10点0分的数据
ts.at_time(time(10,0))

3.通过between_time获取两个时间点之间的数据

ts.between_time(time(10,0),time(10,1))

4.通过asof获取最接近当前时间的数据

asof解释:最后一行不是NaN值的值。通俗的说:假如我有一组数据,某个点的时候这个值是NaN,那就求这个值之前最近一个不是NaN的值是多少

selection=pd.date_range('2020-06-01 10:00',periods=4,freq='B')
ts.asof(selection)

三、时间序列的生成-datetime/date_range(start,end,perios,freq)

1.直接使用date_time生成

dates=[
datetime(2020,1,2),datetime(2020,1,5),datetime(2020,1,7),
datetime(2020,1,8),datetime(2020,1,10),datetime(2020,1,12)
]
ts=pd.Series(np.random.randn(6),index=dates)

date_range可以生成指定长度的DatetimeIndex

  • 指定开始和结束
pd.date_range('4/1/2020','6/1/2020')
DatetimeIndex(['2020-04-01', '2020-04-02', '2020-04-03', '2020-04-04',
'2020-04-05', '2020-04-06', '2020-04-07', '2020-04-08',
'2020-04-09', '2020-04-10', '2020-04-11', '2020-04-12',
'2020-04-13', '2020-04-14', '2020-04-15', '2020-04-16',
'2020-04-17', '2020-04-18', '2020-04-19', '2020-04-20',
'2020-04-21', '2020-04-22', '2020-04-23', '2020-04-24',
'2020-04-25', '2020-04-26', '2020-04-27', '2020-04-28',
'2020-04-29', '2020-04-30', '2020-05-01', '2020-05-02',
'2020-05-03', '2020-05-04', '2020-05-05', '2020-05-06',
'2020-05-07', '2020-05-08', '2020-05-09', '2020-05-10',
'2020-05-11', '2020-05-12', '2020-05-13', '2020-05-14',
'2020-05-15', '2020-05-16', '2020-05-17', '2020-05-18',
'2020-05-19', '2020-05-20', '2020-05-21', '2020-05-22',
'2020-05-23', '2020-05-24', '2020-05-25', '2020-05-26',
'2020-05-27', '2020-05-28', '2020-05-29', '2020-05-30',
'2020-05-31', '2020-06-01'],
dtype='datetime64[ns]', freq='D')
  • 指定步长
pd.date_range(start='4/1/2020',periods=20)
DatetimeIndex(['2020-04-01', '2020-04-02', '2020-04-03', '2020-04-04',
'2020-04-05', '2020-04-06', '2020-04-07', '2020-04-08',
'2020-04-09', '2020-04-10', '2020-04-11', '2020-04-12',
'2020-04-13', '2020-04-14', '2020-04-15', '2020-04-16',
'2020-04-17', '2020-04-18', '2020-04-19', '2020-04-20'],
dtype='datetime64[ns]', freq='D')
  • 指定偏移量

M:日历月末最后一天

pd.date_range('1/1/2020','12/1/2020',freq='M')
DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
'2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31',
'2020-09-30', '2020-10-31', '2020-11-30'],
dtype='datetime64[ns]', freq='M')

BM:每月的最后个工作日,business end of month

pd.date_range('1/1/2020','12/1/2020',freq='BM')
DatetimeIndex(['2020-01-31', '2020-02-28', '2020-03-31', '2020-04-30',
'2020-05-29', '2020-06-30', '2020-07-31', '2020-08-31',
'2020-09-30', '2020-10-30', '2020-11-30'],
dtype='datetime64[ns]', freq='BM')

自定义时间偏移,如h、4h、1h30min

pd.date_range('1/1/2020',periods=10,freq='1h30min')
DatetimeIndex(['2020-01-01 00:00:00', '2020-01-01 01:30:00',
'2020-01-01 03:00:00', '2020-01-01 04:30:00',
'2020-01-01 06:00:00', '2020-01-01 07:30:00',
'2020-01-01 09:00:00', '2020-01-01 10:30:00',
'2020-01-01 12:00:00', '2020-01-01 13:30:00'],
dtype='datetime64[ns]', freq='90T')

四、时间序列的偏移量对照表-freq

名称 偏移量类型 说明
D Day 每日
B BusinessDay 每工作日
H Hour 每小时
T或min Minute 每分
S Second 每秒
L或ms Milli 每毫秒
U Micro 每微秒
M MounthEnd 每月最后一个日历日
BM BusinessMonthEnd 每月最后一个工作日
MS MonthBegin 每月每一个工作日
BMS BusinessMonthBegin 每月第一个工作日
W-MON、W-TUE... Week 指定星期几(MON、TUE、WED、THU、FRI、SAT、SUM)
WOM-1MON、WMON-2MON WeekOfMonth 产生每月第一、第二、第三或第四周的星期几
Q-JAN、Q-FEB... QuaterEnd 对于以指定月份(JAN、FEB、MAR、APR、MAY、JUN、JUL、AUG、SEP、OCT、NOV、DEC)结束的年度,每季度最后一月的最后一个日历日
BQ-JAN、BQ-FEB... BusinessQuaterEnd 对于以指定月份结束的年度,每季度最后一月的最后一个工作日
QS-JAN、QS-FEB... QuaterBegin 对于以指定月份结束的年度,每季度最后一月的第一个日历日
QS-JAN、QS-FEB... BusinessQuaterBegin 对于指定月份结束的年度,每季度最后一月的第一个工作日
A-JAN、A-FEB... YearEnd 每年指定月份的最后一个日历日
BA-JAN、BA-FEB BusinessYearEnd 每年指定月份的最后一个日历日
AS-JAN、AS-FEB YearBegin 每年指定月份的第一个日历日
BAS-JAN、BAS-FEB BusinessYearBegin 每年指定月份的第一个工作日

例如,每月第3个星期五

pd.date_range('1/1/2020','9/1/2020',freq='WOM-3FRI')
DatetimeIndex(['2020-01-17', '2020-02-21', '2020-03-20', '2020-04-17',
'2020-05-15', '2020-06-19', '2020-07-17', '2020-08-21'],
dtype='datetime64[ns]', freq='WOM-3FRI')

五、时间序列的前移或后移-shift/通过Day或MonthEnd

shift方法用于执行单纯的前移或后移操作

ts=pd.Series(np.random.randn(4),
index=pd.date_range('1/1/2020',periods=4,freq='M'))
ts
2020-01-31 0.185458
2020-02-29 0.549704
2020-03-31 0.146584
2020-04-30 0.983613
Freq: M, dtype: float64

向后移动一个月

ts.shift(1,freq='M')
2020-02-29 0.185458
2020-03-31 0.549704
2020-04-30 0.146584
2020-05-31 0.983613
Freq: M, dtype: float64

向前移动3天

ts.shift(-3,freq='D')
2020-01-28 0.185458
2020-02-26 0.549704
2020-03-28 0.146584
2020-04-27 0.983613
dtype: float64

通过Day或MonthEnd移动

from pandas.tseries.offsets import Day,MonthEnd
now=datetime(2020,1,27)
now+3*Day()
Timestamp('2020-01-30 00:00:00')
now+MonthEnd()
Timestamp('2020-01-31 00:00:00')

五、时区处理-tz/tz_convert

python的时区信息来自第三方库pytz,pandas包装了pytz的功能

查看所有时区

pytz.common_timezones

转换时区- tz_convert

rng=pd.date_range('3/9/2020 9:30',periods=6,freq='D',tz='UTC')
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts
2020-03-09 09:30:00+00:00 -1.779006
2020-03-10 09:30:00+00:00 -0.293860
2020-03-11 09:30:00+00:00 -0.174114
2020-03-12 09:30:00+00:00 0.749316
2020-03-13 09:30:00+00:00 0.342134
2020-03-14 09:30:00+00:00 1.101283
Freq: D, dtype: float64 ts.tz_convert('Asia/Shanghai')
2020-03-09 17:30:00+08:00 -1.779006
2020-03-10 17:30:00+08:00 -0.293860
2020-03-11 17:30:00+08:00 -0.174114
2020-03-12 17:30:00+08:00 0.749316
2020-03-13 17:30:00+08:00 0.342134
2020-03-14 17:30:00+08:00 1.101283
Freq: D, dtype: float64

六、时期及算术运算-period

时期(period)表示的是时间区间,比如数日、数月、数季、数年等

下面这个Period对象表示从2020年1月1日到2020年12月31日之间的整段时间

p=pd.Period(2020,freq='A-DEC')
p
Period('2020', 'A-DEC')

创建规则的时期范围

#季度为Q生成13个时间
pd.period_range("2019-01", periods=13, freq="Q") #Q代表季度为频率,默认的后缀为DEC代表一年以第1个月为结束【最后一个月为1月份】
pd.period_range("2019-01", periods=13, freq="Q-JAN") # 以季度Q【年为频率】生成13个时间
pd.period_range("2019-01", periods=13, freq="Y") #以季度Q【2个月为频率】生成13个时间
pd.period_range("2019-01", periods=13, freq="2m")

PeriodIndex类保存了一组Period,可以在pandas数据结构中用作轴索引

rng=pd.period_range('1/1/2020','6/30/2020',freq='M')
rng
PeriodIndex(['2020-01', '2020-02', '2020-03', '2020-04', '2020-05', '2020-06'], dtype='period[M]', freq='M') pd.Series(np.random.randn(6),rng)
2020-01 -1.050150
2020-02 -0.828435
2020-03 1.648335
2020-04 1.476485
2020-05 0.779732
2020-06 -1.394688
Freq: M, dtype: float64

使用字符串创建PeriodIndex

Q代表季度为频率,默认的后缀为DEC代表一年以第12个月为结束

pd.PeriodIndex(['2020Q3','2020Q2','2020Q1'],freq='Q-DEC')

Period和PeriodIndex互转-asfreq

p=pd.Period('2020',freq='A-DEC')
p.asfreq('M',how='start')
Period('2020-01', 'M') p=pd.Period('2020-08',freq='M')
p.asfreq('A-JUN')
Period('2021', 'A-JUN')

to_period可以将datetime转period

rng=pd.date_range('1/1/2020',periods=6,freq='D')
ts=pd.Series(np.random.randn(6),index=rng) ts
2020-01-01 -1.536552
2020-01-02 -0.550879
2020-01-03 0.601546
2020-01-04 -0.103521
2020-01-05 0.445024
2020-01-06 1.127598
Freq: D, dtype: float64 ts.to_period('M')
2020-01 -1.536552
2020-01 -0.550879
2020-01 0.601546
2020-01 -0.103521
2020-01 0.445024
2020-01 1.127598
Freq: M, dtype: float64

to_timespame可以将Period转换为时间戳

ts.to_period('M').to_timestamp()

七、频率转换-resample

重采样(resampling)指将时间序列从一个频率转换到另一个频率的处理过程

pandas对象都带有一个resample方法,是各种频率转换的函数

降采样率

#查看100天的采样
rng=pd.date_range('1/1/2020',periods=100,freq='D')
ts=pd.Series(np.random.randn(len(rng)),index=rng) # 转为一月的
ts.resample('M').mean()
2020-01-31 -0.049213
2020-02-29 -0.155195
2020-03-31 -0.000091
2020-04-30 -0.023561
Freq: M, dtype: float64

分钟的采样转为5分钟的

rng=pd.date_range('1/1/2020',periods=12,freq='T')
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts.resample('5min').sum() 2020-01-01 00:00:00 1.376219
2020-01-01 00:05:00 0.883248
2020-01-01 00:10:00 -0.939534
Freq: 5T, dtype: float64

通过groupby进行采样,传入一个能够访问时间序列的索引上字段的函数

rng=pd.date_range('1/1/2020',periods=100,freq='D')
ts=pd.Series(np.random.randn(len(rng)),index=rng) ts.groupby(lambda x:x.month).mean()
2020-01-31 0.182420
2020-02-29 0.200134
2020-03-31 -0.108818
2020-04-30 -0.187426
Freq: M, dtype: float64

升采样率

示例: 周数据转为日

# 周数据
frame=pd.DataFrame(
np.random.randn(2,4),
index=pd.date_range('1/1/2020',periods=2,freq='W-WED'),
columns=['Colorado','Texa','New York','Ohio']
)
# #转为日
frame.resample('D').asfreq()
#用前面的值填充
frame.resample('D').ffill()
#用后面的值填充
frame.resample('D').bfill()

八、如何格式化时间序列

可以使用strftime格式化为相应的字符串,具体方法可以参考Series的API文档的Datetime操作

x=pd.date_range('2020-01-01',periods=30)
x.strftime('%Y-%m')

pandas时间序列常用操作的更多相关文章

  1. Pandas库常用函数和操作

    1. DataFrame 处理缺失值  dropna() df2.dropna(axis=0, how='any', subset=[u'ToC'], inplace=True) 把在ToC列有缺失值 ...

  2. pandas_时间序列和常用操作

    # 时间序列和常用操作 import pandas as pd # 每隔五天--5D pd.date_range(start = '',end = '',freq = '5D') ''' Dateti ...

  3. Python数据科学手册-Pandas:向量化字符串操作、时间序列

    向量化字符串操作 Series 和 Index对象 的str属性. 可以正确的处理缺失值 方法列表 正则表达式. Method Description match() Call re.match() ...

  4. pandas中常用的操作一

    pandas中常用的功能: 1.显示所有的列的信息,999表示显示最大的列为999 pd.options.display.max_columns=999 2.读取excel时设置使用到列的名称,和列的 ...

  5. Pandas 时间序列处理

    目录 Pandas 时间序列处理 1 Python 的日期和时间处理 1.1 常用模块 1.2 字符串和 datetime 转换 2 Pandas 的时间处理及操作 2.1 创建与基础操作 2.2 时 ...

  6. Python——Pandas 时间序列数据处理

    介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍 ...

  7. Pandas时间序列

    Pandas时间序列 pandas 提供了一组标准的时间序列处理工具和数据算法 数据类型及操作 Python 标准库的 datetime datetime 模块中的 datetime. time. c ...

  8. Pandas的基础操作(一)——矩阵表的创建及其属性

    Pandas的基础操作(一)——矩阵表的创建及其属性 (注:记得在文件开头导入import numpy as np以及import pandas as pd) import pandas as pd ...

  9. python数据结构:pandas(2)数据操作

    一.Pandas的数据操作 0.DataFrame的数据结构 1.Series索引操作 (0)Series class Series(base.IndexOpsMixin, generic.NDFra ...

随机推荐

  1. 28款GitHub最流行的开源机器学习项目,推荐GitHub上10 个开源深度学习框架

    20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语 ...

  2. ASP.NET MVC 实现页落网资源分享网站+充值管理+后台管理(9)之系统登录

    前面我们已经做好了一个文章管理功能模块,接下来,我们回头来做登录窗口,登录不仅涉及到登录验证还涉及到登录日志还有缓存时长等. 对于缓存的相关设置,我们已经写好封装在Bobo.Utilities.dll ...

  3. GitHub使用详细流程(多人开发)

    联合项目开发GIThub使用 分支 在没有使用分支之前,git会默认有一个分支, 就是主分支(master分支,还记得 git push –u origin master这个命令吗?) 这里的mast ...

  4. Delta Lake源码分析

    目录 Delta Lake源码分析 Delta Lake元数据 snapshot生成 日志提交 冲突检测(并发控制) delete update merge Delta Lake源码分析 Delta ...

  5. Consul etcd ZooKeeper euerka 对比

    这里就平时经常用到的服务发现的产品进行下特性的对比,首先看下结论: Feature Consul zookeeper etcd euerka 服务健康检查 服务状态,内存,硬盘等 (弱)长连接,kee ...

  6. Team Foundation Server 2015使用教程【10】:团队项目删除

  7. freemarker<三>

    前两篇博客介绍了freemaker是什么以及简单的语法规则,下面我们通过实现一个demo来看在实际应用中如何使用freemaker,本篇博客主要介绍freemaker与spring的整合. 需要的Ja ...

  8. 在加权无向图上求出一条从1号结点到N号结点的路径,使路径上第K+1大的边权尽量小

    二分+最短路算法 #include<cstdio> #include<iostream> #include<cstring> #include<algorit ...

  9. spring之第一个spring程序

    spring具体描述: 轻量级 IOC:依赖注入 AOP:面向切片编程 容器:spring是一个容器,包含并且管理应用的生命周期 框架 一站式 一.搭建spring开发环境 在eclipse中新建一个 ...

  10. Python 打包——过去、现在与未来

    英文 | Python packaging - Past, Present, Future[1] 原作 | BERNAT GABOR 译者 | 豌豆花下猫 声明 :本文获得原作者授权翻译,转载请保留原 ...