李宏毅机器学习课程---3、Where does the error come from
李宏毅机器学习课程---3、Where does the error come from
一、总结
一句话总结:机器学习的模型中error的来源是什么
bias:比如打靶,你的瞄准点离准心的偏移
variance:比如打靶,你的实际打靶的位置 偏离你的瞄准点的距离:相当于方差
1、机器学习中为什么需要判断error的来源?
有的放矢,改进模型:因为你的模型出错,你肯定需要改进模型,知道错误来源后才方便改进模型
2、做多次实验,一次函数和多次函数的函数在图上如何分布?
多次函数在多次实验中分布的线比较开
3、简单model和复杂model,bias和variance的大小情况如何?
简单模型:Large Bias,Small Variance
复杂模型:Small Bias,Large Variance
4、bias和variance分别很大的时候叫什么?
Underfitting:Large Bias:under说明小了,还要继续提升模型复杂度
Overfitting:Large Variance:over说明模型过渡复杂了
5、我怎么知道我模型是bias很大(Underfitting)?
不能满足training data:If your model cannot even fit the training examples, then you have large bias
6、我怎么知道我模型是variance很大(Overfitting)?
不能满足testing data:If you can fit the training data, but large error on testing data, then you probably have large variance
7、如果我模型的bias很大(Underfitting),我应该怎么做?
重新设计模型:比如考虑更多参数
更多数据没用:因为你的模型本身就不好,所以更多数据其实是没用的
For bias, redesign your model:
• Add more features as input
• A more complex model
8、如果我模型的variance很大(Overfitting),我应该怎么做?
More data:增加数据:Very effective, but not always practical
Regularization:平滑化:没用更多数据的情况:可能伤害bias
9、我们怎样选择模型?
相互转换:There is usually a trade-off between bias and variance.
相当于和更小:Select a model that balances two kinds of error to minimize total error
10、我们选择好了模型之后,用自己的测试数据测试之后,外部的测试数据测试的结果一般会比我们的测试结果大么?
一般都会比我们的测试结果大
11、我们应该如何验证我们的模型?
数据分多份:测试数据1,模型完了之后再用; 测试数据2,选模型的时候再用; 数据3,构建模型的时候用
一定留一份data做 private data,模拟实际用户使用的时候的情况
二、内容在总结中
李宏毅机器学习课程---3、Where does the error come from的更多相关文章
- 李宏毅机器学习课程---2、Regression - Case Study
李宏毅机器学习课程---2.Regression - Case Study 一.总结 一句话总结: 分类讨论可能是比较好的找最佳函数的方法:如果 有这样的因素存在的话 模型不够好,可能是因素没有找全 ...
- 李宏毅机器学习课程---4、Gradient Descent (如何优化 )
李宏毅机器学习课程---4.Gradient Descent (如何优化) 一.总结 一句话总结: 调整learning rates:Tuning your learning rates 随机Grad ...
- 李宏毅机器学习课程笔记-2.5线性回归Python实战
本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描 ...
- 李宏毅机器学习笔记1:Regression、Error
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- Coursera台大机器学习课程笔记7 -- Noise and Error
本章重点: 简单的论证了即使有Noise,机器依然可以学习,VC Dimension对泛化依然起作用:介绍了一些评价Model效果的Error Measurement方法. 一论证即使有Noisy, ...
- 李宏毅老师机器学习课程笔记_ML Lecture 2: Where does the error come from?
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅老师机器学习课程笔记_ML Lecture 1: ML Lecture 1: Regression - Demo
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅老师机器学习课程笔记_ML Lecture 1: 回归案例研究
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅老师机器学习课程笔记_ML Lecture 0-2: Why we need to learn machine learning?
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
随机推荐
- 获取min-max之间的随机数
private static String getRandom(int min, int max){ Integer random =(int)(min+Math.random()*(max-min+ ...
- linux IPC 消息队列
消息队列函数原型 在建立IPC通讯时(如消息队列,共享内存)必须建立一个ID值.通常情况下,这个ID值由ftok函数得到 #inlcude <sys/types.h> #include & ...
- SCP-bzoj-1068
项目编号:bzoj-1068 项目等级:Safe 项目描述: 戳这里 特殊收容措施: 区间DP.f[l][r][s]表示l到r的子串能最小被压成的长度,其中s∈[0,1]表示该串压缩后串中是否能含有M ...
- CF D. Walking Between Houses (贪心)
题意: 现在有n个房子排成一列,编号为1~n,起初你在第1个房子里,现在你要进行k次移动,每次移动一都可以从一个房子i移动到另外一个其他的房子j里(i != j),移动的距离为|j - i|.问你进过 ...
- angulajs 详解 directive 中 的 scope 概念
Directive 是 angularjs 中最重要的概念,我的理解就是自定义html tag, 这个自定的tag 浏览器不会解析,会有angularjs 来动态解析. 比如在html 中添加 < ...
- Java-Class-FC:java.util.Optional
ylbtech-Java-Class-FC:java.util.Optional 1.返回顶部 2.返回顶部 1.1. import java.util.Optional; 1.2.1. @Api ...
- 2、获取APP CPU占用率
前面已经介绍过如何获取包名和主活动名.这里不再过多赘述.我们依旧采取两种方案实现APP CPU占有率 Windows下获取APP CPU占用率 adb shell "dumpsys cpui ...
- Windows的安全模型
1. 安全身份 Windows的安全模型是以用户为线索的,用户的身份是在登录系统时验证的. 除了用户外,还可以有一些特殊实体需要拥有安全的身份,以便进行验证,比如groups, domain等等. W ...
- ICPC Asia Nanning 2017 I. Rake It In (DFS+贪心 或 对抗搜索+Alpha-Beta剪枝)
题目链接:Rake It In 比赛链接:ICPC Asia Nanning 2017 Description The designers have come up with a new simple ...
- MySQL数据库(一)—— 数据库介绍、MySQL安装、基础SQL语句
数据库介绍.MySQL安装.基础SQL语句 一.数据库介绍 1.什么是数据库 数据库即存储数据的仓库 2.为什么要用数据库 (1)用文件存储是和硬盘打交道,是IO操作,所以有效率问题 (2)管理不方便 ...