AI 数学基础 : 熵
什么是熵(entropy)?
1.1 熵的引入
事实上,熵的英文原文为entropy,最初由德国物理学家鲁道夫·克劳修斯提出,其表达式为:
它表示一个系系统在不受外部干扰时,其内部最稳定的状态。后来一中国学者翻译entropy时,考虑到entropy是能量Q跟温度T的商,且跟火有关,便把entropy形象的翻译成“熵”。
我们知道,任何粒子的常态都是随机运动,也就是"无序运动",如果让粒子呈现"有序化",必须耗费能量。所以,温度(热能)可以被看作"有序化"的一种度量,而"熵"可以看作是"无序化"的度量。
可以理解为:由有序变为无序所消耗的能量或时间等的度量
1948年,香农Claude E. Shannon引入信息(熵),将其定义为离散随机事件的出现概率。一个系统越是有序,信息熵就越低;反之,一个系统越是混乱,信息熵就越高。所以说,信息熵可以被认为是系统有序化程度的一个度量。
若无特别指出,下文中所有提到的熵均为信息熵。
1.2 熵的定义
条件熵:在随机变量X发生的前提下,随机变量Y发生所新带来的熵定义为Y的条件熵,用H(Y|X)表示,用来衡量在已知随机变量X的条件下随机变量Y的不确定性。
且有此式子成立:H(Y|X) = H(X,Y) – H(X),整个式子表示(X,Y)发生所包含的熵减去X单独发生包含的熵。至于怎么得来的请看推导:
第二行推到第三行的依据是边缘分布p(x)等于联合分布p(x,y)的和;
第三行推到第四行的依据是把公因子logp(x)乘进去,然后把x,y写在一起;
第四行推到第五行的依据是:因为两个sigma都有p(x,y),故提取公因子p(x,y)放到外边,然后把里边的-(log p(x,y) - log p(x))写成- log (p(x,y)/p(x) ) ;
第五行推到第六行的依据是:条件概率的定义p(x,y) = p(x) * p(y|x),故p(x,y) / p(x) = p(y|x)。

在一定程度上,相对熵可以度量两个随机变量的“距离”,且有D(p||q) ≠D(q||p)。另外,值得一提的是,D(p||q)是必然大于等于0的。
互信息:两个随机变量X,Y的互信息定义为X,Y的联合分布和各自独立分布乘积的相对熵,用I(X,Y)表示:
且有I(X,Y)=D(P(X,Y) || P(X)P(Y))。下面,咱们来计算下H(Y)-I(X,Y)的结果,如下:
通过上面的计算过程,我们发现竟然有H(Y)-I(X,Y) = H(Y|X)。故通过条件熵的定义,有:H(Y|X) = H(X,Y) - H(X),而根据互信息定义展开得到H(Y|X) = H(Y) - I(X,Y),把前者跟后者结合起来,便有I(X,Y)= H(X) + H(Y) - H(X,Y),此结论被多数文献作为互信息的定义
AI 数学基础 : 熵的更多相关文章
- 图解AI数学基础 | 线性代数与矩阵论
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-det ...
- 图解AI数学基础 | 概率与统计
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-det ...
- AI 数学基础 张量 范数
1.张量 几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量. 例如,可以将任意一张彩色图片表示成一个三阶张量,三个维度分 ...
- AI数学基础:符号
1.sigma 表达式 ∑ 是一个求和符号,英语名称:Sigma,汉语名称:西格玛(大写Σ,小写σ) 第十八个希腊字母.在希腊语中,如果一个单字的最末一个字母是小写sigma,要把该字母写成 ς ,此 ...
- AI 数学基础:概率分布,幂,对数
1.概率分布 参考: https://blog.csdn.net/ZZh1301051836/article/details/89371412 p 2.幂次的意义 物理理解:幂次描述的是指数型的变化 ...
- AI数学基础之:奇异值和奇异值分解
目录 简介 相似矩阵 对角矩阵 可对角化矩阵 特征值 特征分解 特征值的几何意义 奇异值 Singular value 奇异值分解SVD 简介 奇异值是矩阵中的一个非常重要的概念,一般是通过奇异值分解 ...
- AI数学基础之:概率和上帝视角
目录 简介 蒙题霍尔问题 上帝视角解决概率问题 上帝视角的好处 简介 天要下雨,娘要嫁人.虽然我们不能控制未来的走向,但是可以一定程度上预测为来事情发生的可能性.而这种可能性就叫做概率.什么是概率呢? ...
- AI数学基础之:确定图灵机和非确定图灵机
目录 简介 图灵机 图灵机的缺点 等效图灵机 确定图灵机 非确定图灵机 简介 图灵机是由艾伦·麦席森·图灵在1936年描述的一种抽象机器,它是人们使用纸笔进行数学运算的过程的抽象,它肯定了计算机实现的 ...
- AI数学基础之:P、NP、NPC问题
目录 简介 P问题 NP问题 NP问题的例子 有些NP问题很难解决 NPC问题 NP-hard P和NP问题 简介 我们在做组合优化的时候需要去解决各种问题,根据问题的复杂度不同可以分为P.NP.NP ...
随机推荐
- 使用gRPC-Web从浏览器调用.NET gRPC服务
我很高兴宣布通过.NET对gRPC-Web进行实验性支持.gRPC-Web允许从基于浏览器的应用程序(例如JavaScript SPA或Blazor WebAssembly应用程序)调用gRPC. . ...
- Java TreeSet的使用
1.TreeSe自带排序的set,没有重复元素. 2.TreeSet 如果构造函数中没有使用比较器,那在装载的对象类中要实现Comparable 接口. 3.TreeSet 使用初始化比较器的方式. ...
- Sparc V8
Sparc V8指令 在sparc V8手册中p83(Table A-1 Mapping of Synthetic Instructions to SPARC Instructions)有合成指令sy ...
- [jQuery]jQuery和DOM对象互换(四)
DOM 和 jQuery 相互转换 DOM 转jQuery $(DOM对象) # (1)直接获取 $('video'); # (2)转换 $(DOM对象) var myVideo = document ...
- 1138 - Trailing Zeroes (III) 二分
1138 - Trailing Zeroes (III) You task is to find minimal natural number N, so that N! contains exa ...
- Day5前端学习之路——盒模型和浮动
盒子模型 浮动float 一.盒子模型 (1)content内容区 width和height是框内容显示的区域——包括框内的文本内容,以及表示嵌套子元素的其他框,也可以使用min-width.max- ...
- 用命令提示符运行简单的Java程序报错
首先用记事本写一个最简单的Java代码,我把文件保存在桌面的HelloWorld文件夹中,这里将记事本的名称改为HelloWorld.java public class HelloWorld{ pub ...
- 【转】关于apt源配置的问题
涉及的基本配置文件: apt核心配置文件集中在 /etc/apt 其中,管理软件来源的配置文件如下 sources.list // 主要软件源 so ...
- oracle数据库重要的查询语句
查看所有数据文件(dbf文件)的存放位置 SQL> select name from v$datafile; 标红色的为默认表空间文件 SQL> select name from v$da ...
- mysql中EXPLAIN 的作用
(一)id列: (1).id 相同执行顺序由上到下 mysql> explain -> SELECT*FROM tb_order tb1 -> LEFT JOIN tb_produc ...