最小生成树计数 模板 hdu 4408
题意是给定n个点,m条边的无向图,求最小生成树的个数对p取模。
用kruscal计算最小生成树时,每次取连接了两个不同联通块的最小的边。也就是先处理d1条c1长度的边,再处理d2条c2长度的边。长度相同的边无论怎么选,最大联通情况都是固定的。 分别对ci长度的边产生的几个联通块计算生成树数量再乘起来,然后把这些联通块缩点,再计算ci+1长度的边。
生成树计数用Matrix-Tree定理,上一篇是无重边的,这题的缩点后是会产生重边的,Matrix-tree也适用: //抄别人博客的
Kirchhoff矩阵任意n-1阶子矩阵的行列式的绝对值就是无向图的生成树的数量。
Kirchhoff矩阵的定义是度数矩阵-邻接矩阵。
1、G的度数矩阵D[G]:n*n的矩阵,Dii等于Vi的度数,其余为0。
2、G的邻接矩阵A[G]:n*n的矩阵, Vi、Vj之间有边直接相连,则 Aij=ij之间的边数,否则为0。
并查集fa[i]是当前长度之前,节点所属的联通块,ka[i]是当前长度的边连接后它在的联通块。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
ll n,m,p,ans;
vector<int>gra[N];
struct edge{
int u,v,w;
}e[M];
int cmp(edge a,edge b){
return a.w<b.w;
}
ll mat[N][N],g[N][N];
ll fa[N],ka[N],vis[N];
ll det(ll c[][N],ll n){
ll i,j,k,t,ret=;
for(i=;i<n;i++)
for(j=;j<n;j++) c[i][j]%=p;
for(i=; i<n; i++){
for(j=i+; j<n; j++)
while(c[j][i]){
t=c[i][i]/c[j][i];
for(k=i; k<n; k++)
c[i][k]=(c[i][k]-c[j][k]*t)%p;
swap(c[i],c[j]);
ret=-ret;
}
if(c[i][i]==)
return 0L;
ret=ret*c[i][i]%p;
}
return (ret+p)%p;
}
ll find(ll a,ll f[]){
return f[a]==a?a:find(f[a],f);
}
void matrix_tree(){//对当前长度的边连接的每个联通块计算生成树个数
for(int i=;i<n;i++)if(vis[i]){//当前长度的边连接了i节点
gra[find(i,ka)].push_back(i);//将i节点压入所属的联通块
vis[i]=;//一边清空vis数组
}
for(int i=;i<n;i++)
if(gra[i].size()>){//联通块的点数为1时生成树数量是1
memset(mat,,sizeof mat);//清空矩阵
int len=gra[i].size();
for(int j=;j<len;j++)
for(int k=j+;k<len;k++){//构造这个联通块的矩阵(有重边)
int u=gra[i][j],v=gra[i][k];
if(g[u][v]){
mat[k][j]=(mat[j][k]-=g[u][v]);
mat[k][k]+=g[u][v];mat[j][j]+=g[u][v];
}
}
ans=ans*det(mat,gra[i].size()-)%p;
for(int j=;j<len;j++)fa[gra[i][j]]=i;//缩点
}
for(int i=;i<n;i++)
{
gra[i].clear();
ka[i]=fa[i]=find(i,fa);
}
}
int main(){
while(scanf("%lld%lld%lld",&n,&m,&p),n){
for(int i=;i<m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
u--;v--;
e[i]=(edge){u,v,w};
}
sort(e,e+m,cmp);
memset(g,,sizeof g);
ans=;
for(ll i=;i<n;i++)ka[i]=fa[i]=i;
for(ll i=;i<=m;i++){//边从小到大加入
if(i&&e[i].w!=e[i-].w||i==m)//处理完长度为e[i-1].w的所有边
matrix_tree();//计算生成树
ll u=find(e[i].u,fa),v=find(e[i].v,fa);//连的两个缩点后的点
if(u!=v)//如果不是一个
{
vis[v]=vis[u]=;
ka[find(u,ka)]=find(v,ka);//两个分量在一个联通块里。
g[u][v]++,g[v][u]++;//邻接矩阵
}
}
int flag=;
for(int i=;i<n;i++)if(fa[i]!=fa[i-])flag=;
printf("%lld\n",flag?ans%p:);//注意p可能为1,这样m=0时如果ans不%p就会输出1
}
}
最小生成树计数 模板 hdu 4408的更多相关文章
- 最小生成树计数 bzoj 1016
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...
- 【bzoj1016】 JSOI2008—最小生成树计数
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- 【BZOJ】【1016】【JSOI2008】最小生成树计数
Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...
- 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集
最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...
- BZOJ_1016_[JSOI2008]_最小生成树计数_(dfs+乘法原理)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1016 给出一张图,其中具有相同权值的边的数目不超过10,求最小生成树的个数. 分析 生成树的计 ...
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- 1016: [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 6200 Solved: 2518[Submit][St ...
随机推荐
- Babel 7 主要改变
1.不支持Node:0.10,0.12,4,5版本 2.更换命名-@babel/xxx 3.移除以年份命名的presets,统一更换成@babel/preset-env 4.移除 ’Stage‘ pr ...
- MCPS & MIPS
MIPS:Million Instructions Per Second MCPS:Million Cycles Per Second MIPS = Total Instructions*Sampli ...
- 01:认识QT
Qt: Qt是一个1991年由Qt Company开发的跨平台C++图形用户界面应用程序开发框架.它既可以开发GUI程序,也可用于开发非GUI程序,比如控制台工具和服务器.Qt是面向对象的框架,使用特 ...
- 解决Bootstrap container样式左右内边距15px,导致屏幕不美观
首先上问题:此问题为bootstrap的 container样式导致,该样式默认左右内边距15px为了栅栏效果而设计,具体看源码css样式,如下图,右侧黄色边框边距和30px,实为两个div左浮动,将 ...
- testclass面试题
http://www.testclass.net/interview/selenium/ seleniuim面试题 http://www.testclass.net/interview/inter ...
- VS 2017 mscorlib.dll 加载元数据时发生严重错误,需要终止调试
VS 2017 mscorlib.dll 加载元数据时发生严重错误,需要终止调试 C:\Windows\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0. ...
- onvif学习一:wsdl 和soap
来源:https://www.cnblogs.com/huanghongbo/p/5920123.html WSDL是用来描述WebService的,它用XML的格式描述了WebService有哪些方 ...
- Python之路Day06
小数据池 == 判断两个值是否相等 is -- 是,判断两边的内存地址是否相同 a=10 b=10 print(a is b) id() -- 查看内存地址 代码块 一个py文件,一个函数,一个模块, ...
- 自定义jstl标签*
原文链接:https://www.it610.com/article/442039.htm 步骤如下: 1.写tld文档:用来指定标签的名字,标签库等. 2.写标签处理器类. 3.配置到web.xml ...
- Docker+JMeter单机版+Nginx
基于JMeter5.1.1+Nginx1.12.2JMeter发起压测 Nginx作为文件服务器 一.目录结构: Dockerfile文件: FROM ubuntu:18.04# 基础镜像 MAIN ...