Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., ajis equal to k.

Input

The first line of the input contains integers nm and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output

Print m lines, answer the queries in the order they appear in the input.

Examples

Input
6 2 3
1 2 1 1 0 3
1 6
3 5
Output
7
0
Input
5 3 1
1 1 1 1 1
1 5
2 4
1 3
Output
9
4
4 题意:
询问区间内异或和刚好为k的字段个数。
思路:
莫队+前缀和。
这个前缀和比较套路,用的是前缀异或和。
字段【l,r】的异或和就是pre[r]^pre[l-1],
这种情况下我们在莫队的过程中记录l,r的pre[i]出现的次数,就可以完成更新了。 注意当L<q[i].l时,要先让记录per[L]出现次数的个数减一。
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl;
#define ls (t<<1)
#define rs ((t<<1)+1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
int num[maxm*],pre[maxn],a[maxn]; struct node{
int l,r;
int id;
}q[maxn];
ll ans[maxn];
ll anss;
int block; bool cmp(node a,node b){
if(a.l/block!=b.l/block){return a.l<b.l;}
return a.r<b.r;
} int main()
{
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
pre[i]=pre[i-]^a[i];
} block=sqrt(n); for(int i=;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id=i;
} sort(q+,q++m,cmp);
int L=,R=;
anss=;
num[]=;
for(int i=;i<=m;i++){
while(L<q[i].l){
int t=k^pre[L-];
num[pre[L-]]--;///注意语句顺序
anss-=num[t];
L++;
}
while(R>q[i].r){
int t=k^pre[R];
num[pre[R]]--;
anss-=num[t];
R--;
}
while(L>q[i].l){
L--;
int t=k^pre[L-];
anss+=num[t];
num[pre[L-]]++;
}
while(R<q[i].r){
R++;
int t=k^pre[R];
anss+=num[t];
num[pre[R]]++;
}
ans[q[i].id]=anss;
}
for(int i=;i<=m;i++){
printf("%lld\n",ans[i]);
}
return ;
}

CodeForces - 617E XOR and Favorite Number (莫队+前缀和)的更多相关文章

  1. CodeForces - 617E XOR and Favorite Number 莫队算法

    https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry,  问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...

  2. Codeforces 617E XOR and Favorite Number莫队

    http://codeforces.com/contest/617/problem/E 题意:给出q个查询,每次询问区间内连续异或值为k的有几种情况. 思路:没有区间修改,而且扩展端点,减小端点在前缀 ...

  3. codeforces 617E. XOR and Favorite Number 莫队

    题目链接 给n个数, m个询问, 每次询问问你[l, r]区间内有多少对(i, j), 使得a[i]^a[i+1]^......^a[j]结果为k. 维护一个前缀异或值就可以了. 要注意的是 区间[l ...

  4. CODEFORCES 340 XOR and Favorite Number 莫队模板题

    原来我直接学的是假的莫队 原题: Bob has a favorite number k and ai of length n. Now he asks you to answer m queries ...

  5. Codeforces Round #340 (Div. 2) E 莫队+前缀异或和

    E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...

  6. codeforces 617E E. XOR and Favorite Number(莫队算法)

    题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...

  7. Codeforces 617E XOR and Favorite Number(莫队算法)

    题目大概说给一个序列,多次询问区间异或和为k的连续子序列有多少个. 莫队算法,利用异或的性质,通过前缀和求区间和,先处理出序列各个前缀和,然后每次区间转移时维护i以及i-1前缀和为某数的个数并增加或减 ...

  8. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法

    E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...

  9. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

随机推荐

  1. PLAY2.6-SCALA(九) WebSockets

    WebSockets是一种支持全双工通信的套接字.现代的html5通过js api使得浏览器天生支持webSocket.但是Websockets在移动端以及服务器之间的通信也非常有用,在这些情况下可以 ...

  2. 笔记:html常见的兼容问题

    IE: IE的双边距bug: 块级元素float后设置横向的margin,IE6显示的margin比较大. 解决办法:display:inline 双边距bug:在IE6下,如果对元素设置浮动,同时又 ...

  3. C++复制初始化的限制

    相比于直接初始化,复制初始化有更加严格的限制. 1:在复制初始化时,不能使用声明为explicit的构造函数进行的隐式转换.而直接初始化则是允许的: struct Exp { explicit Exp ...

  4. Libevent:1前言

    一:libevent概述: libevent是一个用来编写快速.可移植.非阻塞IO程序的库,它的设计目标是:可移植性.高效.可扩展性.便捷. libevent包含下列组件: evutil:对不同平台下 ...

  5. 16.libgdx根据配置文件生成布局(未完)

    思路: screen分为普通和复杂两种,普通的功能大部分是页面跳转以及简单的crud数据,复杂的单独弄出来 跳转普通的screen,直接根据配置文件调整设置 <layouts> <l ...

  6. poj 2828【线段树 单点更新】

    POJ 2828 还是弱啊.思维是个好东西... 刚开始想来想去用线段树存人的话不仅超时,而且存不下...居然是存空位! sum[]数组存这个序列空位个数,然后逆序遍历.逆序好理解,毕竟最后一个人插进 ...

  7. python 布尔型(bool)

  8. Spring AOP 的@Aspect

    Spring AOP 的@Aspect   转自:http://blog.csdn.net/tanghw/article/details/3862987 从Spring 2.0开始,可以使用基于sch ...

  9. Collections.sort list内部排序

    public class ComparatorUser implements Comparator{   public int compare(Object arg0, Object arg1) {  ...

  10. pytorch nn.Embedding

    pytorch nn.Embeddingclass torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_no ...