pytorch之 activation funcion
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt # fake data
x = torch.linspace(-5, 5, 200) # x data (tensor), shape=(100, 1)
x = Variable(x)
x_np = x.data.numpy() # numpy array for plotting # following are popular activation functions
y_relu = torch.relu(x).data.numpy()
y_sigmoid = torch.sigmoid(x).data.numpy()
y_tanh = torch.tanh(x).data.numpy()
y_softplus = F.softplus(x).data.numpy() # there's no softplus in torch
# y_softmax = torch.softmax(x, dim=0).data.numpy() softmax is a special kind of activation function, it is about probability # plt to visualize these activation function
plt.figure(1, figsize=(8, 6))
plt.subplot(221)
plt.plot(x_np, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best') plt.subplot(222)
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best') plt.subplot(223)
plt.plot(x_np, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best') plt.subplot(224)
plt.plot(x_np, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best') plt.show()
pytorch之 activation funcion的更多相关文章
- pytorch 3 activation 激活函数
2.3 Activation Function import torch import torch.nn.functional as F from torch.autograd import Vari ...
- pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法
目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视 ...
- tensorflow/pytorch/mxnet的pip安装,非源代码编译,基于cuda10/cudnn7.4.1/ubuntu18.04.md
os安装 目前对tensorflow和cuda支持最好的是ubuntu的18.04 ,16.04这种lts,推荐使用18.04版本.非lts的版本一般不推荐. Windows倒是也能用来装深度GPU环 ...
- PyTorch 中,nn 与 nn.functional 有什么区别?
作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权, ...
- (转)Awesome PyTorch List
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...
- pytorch实现style transfer
说是实现,其实并不是我自己实现的 亮出代码:https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/n ...
- Pytorch版本yolov3源码阅读
目录 Pytorch版本yolov3源码阅读 1. 阅读test.py 1.1 参数解读 1.2 data文件解析 1.3 cfg文件解析 1.4 根据cfg文件创建模块 1.5 YOLOLayer ...
- 【深度学习】Pytorch学习基础
目录 pytorch学习 numpy & Torch Variable 激励函数 回归 区分类型 快速搭建法 模型的保存与提取 批训练 加速神经网络训练 Optimizer优化器 CNN MN ...
- 【深度学习】Pytorch 学习笔记
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...
随机推荐
- 一个DNS数据包的惊险之旅
踏上旅程 “小子,快去查一下www.paypal.com的IP地址,我急用,晚了我弄你!”,暴躁老哥一把关上了门,留我一个DNS数据包在冷冰冰的房间. 过了一会儿,一位大叔打开了门,带着我来到了一座叫 ...
- ST表竞赛模板
void RMQ_init(){//ST表的创建模板 ;i<n;i++) d[i][]=mo[i]; ;(<<j)<=n;j++) ;i+(<<j)-<n;i ...
- pom文件继承与聚合
1.简介 pom.xml文件是Maven进行工作的主要配置文件.在这个文件中我们可以配置Maven项目的groupId.artifactId和version等Maven项目必须的元素:可以配置Mave ...
- redis 5种类型
redis可以不严谨的看成: redis: { name: value, name: value, } value的数据类型: 1.字典 2.列表 3.字符串 4.集合 5.有序集合 注意: redi ...
- Java入门 - 高级教程 - 03.泛型
原文地址:http://www.work100.net/training/java-generic.html 更多教程:光束云 - 免费课程 泛型 序号 文内章节 视频 1 概述 2 泛型方法 3 泛 ...
- Manipulating Data from Oracle Object Storage to ADW with Oracle Data Integrator (ODI)
0. Introduction and Prerequisites This article presents an overview on how to use Oracle Data Integr ...
- 美食家App开发日记1
前期一直在看第一行代码Android,这本书感觉讲基础讲得特别细致. 百看不如一试. 因为刚刚接触Android,没办法做到想写什么功能就直接一下写好,只能从最开始基础的控件使用开始练习. 所以一直在 ...
- php--->底层的运行机制与数据结构原理
PHP 底层的运行机制与数据结构原理 1. PHP的设计理念及特点 多进程模型:由于PHP是多进程模型,不同请求间互不干涉,这样保证了一个请求挂掉不会对全盘服务造成影响,当然,随着时代发展,PHP也早 ...
- JS中for...in循环陷阱及遍历数组的方式对比
JavaScript中有很多遍历数组的方式,比较常见的是for(var i=0;i<arr.length;i++){},以及for...in...循环等,这些遍历都有各自的优缺点,下面来看看各种 ...
- springboot整合elasticJob实战(纯代码开发三种任务类型用法)以及分片系统,事件追踪详解
一 springboot整合 介绍就不多说了,只有这个框架是当当网开源的,支持分布式调度,分布式系统中非常合适(两个服务同时跑不会重复,并且可灵活配置分开分批处理数据,贼方便)! 这里主要还是用到zo ...