一、简化前馈网络LeNet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch as t
 
 
class LeNet(t.nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.features = t.nn.Sequential(
            t.nn.Conv2d(365),
            t.nn.ReLU(),
            t.nn.MaxPool2d(22),
            t.nn.Conv2d(6165),
            t.nn.ReLU(),
            t.nn.MaxPool2d(22)
        )
        # 由于调整shape并不是一个class层,
        # 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型
        self.classifiter = t.nn.Sequential(
            t.nn.Linear(16*5*5120),
            t.nn.ReLU(),
            t.nn.Linear(12084),
            t.nn.ReLU(),
            t.nn.Linear(8410)
        )
 
    def forward(self, x):
        = self.features(x)
        = x.view(-116*5*5)
        = self.classifiter(x)
        return x
 
net = LeNet()

二、优化器基本使用方法

  1. 建立优化器实例
  2. 循环:
    1. 清空梯度
    2. 向前传播
    3. 计算Loss
    4. 反向传播
    5. 更新参数
1
2
3
4
5
6
7
8
9
10
11
from torch import optim
 
# 通常的step优化过程
optimizer = optim.SGD(params=net.parameters(), lr=1)
optimizer.zero_grad()  # net.zero_grad()
 
input_ = t.autograd.Variable(t.randn(133232))
output = net(input_)
output.backward(output)
 
optimizer.step()

三、网络模块参数定制

为不同的子网络参数不同的学习率,finetune常用,使分类器学习率参数更高,学习速度更快(理论上)。

1.经由构建网络时划分好的模组进行学习率设定,

1
2
3
# # 直接对不同的网络模块制定不同学习率
optimizer = optim.SGD([{'params': net.features.parameters()}, # 默认lr是1e-5
                       {'params': net.classifiter.parameters(), 'lr'1e-2}], lr=1e-5)

2.以网络层对象为单位进行分组,并设定学习率

1
2
3
4
5
6
7
8
9
10
# # 以层为单位,为不同层指定不同的学习率
# ## 提取指定层对象
special_layers = t.nn.ModuleList([net.classifiter[0], net.classifiter[3]])
# ## 获取指定层参数id
special_layers_params = list(map(id, special_layers.parameters()))
print(special_layers_params)
# ## 获取非指定层的参数id
base_params = filter(lambda p: id(p) not in special_layers_params, net.parameters())
optimizer = t.optim.SGD([{'params': base_params},
                         {'params': special_layers.parameters(), 'lr'0.01}], lr=0.001)

四、在训练中动态的调整学习率

1
2
3
4
5
6
7
8
9
'''调整学习率'''
# 新建optimizer或者修改optimizer.params_groups对应的学习率
# # 新建optimizer更简单也更推荐,optimizer十分轻量级,所以开销很小
# # 但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡
# ## optimizer.param_groups:长度2的list,optimizer.param_groups[0]:长度6的字典
print(optimizer.param_groups[0]['lr'])
old_lr = 0.1
optimizer = optim.SGD([{'params': net.features.parameters()},
                       {'params': net.classifiter.parameters(), 'lr': old_lr*0.1}], lr=1e-5)

可以看到optimizer.param_groups结构,[{'params','lr', 'momentum', 'dampening', 'weight_decay', 'nesterov'},{……}],集合了优化器的各项参数。

『PyTorch』第十一弹_torch.optim优化器 每层定制参数的更多相关文章

  1. 『PyTorch』第十一弹_torch.optim优化器

    一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__i ...

  2. 『PyTorch』第十三弹_torch.nn.init参数初始化

    初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进 ...

  3. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  4. 『PyTorch』第三弹重置_Variable对象

    『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...

  5. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上

    总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...

  6. 『PyTorch』第十弹_循环神经网络

    RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...

  7. 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法

    在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...

  8. 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

    一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...

  9. 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究

    查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...

随机推荐

  1. java-异常处理1

    概要图 异常讲解流程图 一 java 异常和错误层次图 1.1 图1 1.2 图2 二 异常生的过程 1 异常可以结束函数. 同时也让程序结束了. 三 异常和错误的发生和区别 Java运行时期发生的问 ...

  2. idea启动报错:Access denied for user 'root '@'192.168.100.XXX' (using password: YES)

    Caused by: org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean wit ...

  3. PHP闭包实现函数的自调用实现递归

    根据pathinfo访问对应得controller,如ip:port/home/index/index则会访问home目录下的IndexController的index方法:如果不指定pathinfo ...

  4. Nginx设置静态页面压缩和缓存过期时间的方法 (转)

    使用nginx服务器的朋友可能都知道需要设置html静态页面缓存与页面压缩与过期时间的设置了,下面我来给各位同学介绍一下配置方法,包括对ico,gif,bmp,jpg,jpeg,swf,js,css, ...

  5. day4new-转自金角大王

    Python之路,Day4 - Python基础4 (new版)   本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 ...

  6. java视频长度读取 方案参照文件

    ffmpeg库 必须http://ffmpeg.org/download.html#build-windows 第三方jar sauronsoftwarehttp://www.sauronsoftwa ...

  7. cocos2dX 之CCAnimation/CCAnimate

    我们今天来学习cocos2dX里面的动画的制作, 有人说, 不是前面CCAction已经学过了吗? 怎么还要学, CCAction是动作, 而我们今天要学的是动画哦, 是让一个东西动起来哦, 好了进入 ...

  8. Directx11教程(15) D3D11管线(4)

    原文:Directx11教程(15) D3D11管线(4) 本章我们首先了解一下D3D11中的逻辑管线,认识一下管线中每个stage的含义. 参考资料:http://fgiesen.wordpress ...

  9. Person Re-identification 系列论文笔记(八):SPReID

    Human Semantic Parsing for Person Re-identification Kalayeh M M, Basaran E, Gokmen M, et al. Human S ...

  10. twitter、facebook、pinterest、linkedin 分享代码

    twitter.facebook.pinterest.linkedin 分享代码 http://www.cnblogs.com/adstor-Lin/p/3994449.html