『PyTorch』第十一弹_torch.optim优化器 每层定制参数
一、简化前馈网络LeNet
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
import torch as tclass LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__init__() self.features = t.nn.Sequential( t.nn.Conv2d(3, 6, 5), t.nn.ReLU(), t.nn.MaxPool2d(2, 2), t.nn.Conv2d(6, 16, 5), t.nn.ReLU(), t.nn.MaxPool2d(2, 2) ) # 由于调整shape并不是一个class层, # 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型 self.classifiter = t.nn.Sequential( t.nn.Linear(16*5*5, 120), t.nn.ReLU(), t.nn.Linear(120, 84), t.nn.ReLU(), t.nn.Linear(84, 10) ) def forward(self, x): x = self.features(x) x = x.view(-1, 16*5*5) x = self.classifiter(x) return xnet = LeNet() |
二、优化器基本使用方法
- 建立优化器实例
- 循环:
- 清空梯度
- 向前传播
- 计算Loss
- 反向传播
- 更新参数
|
1
2
3
4
5
6
7
8
9
10
11
|
from torch import optim# 通常的step优化过程optimizer = optim.SGD(params=net.parameters(), lr=1)optimizer.zero_grad() # net.zero_grad()input_ = t.autograd.Variable(t.randn(1, 3, 32, 32))output = net(input_)output.backward(output)optimizer.step() |
三、网络模块参数定制
为不同的子网络参数不同的学习率,finetune常用,使分类器学习率参数更高,学习速度更快(理论上)。
1.经由构建网络时划分好的模组进行学习率设定,
|
1
2
3
|
# # 直接对不同的网络模块制定不同学习率optimizer = optim.SGD([{'params': net.features.parameters()}, # 默认lr是1e-5 {'params': net.classifiter.parameters(), 'lr': 1e-2}], lr=1e-5) |
2.以网络层对象为单位进行分组,并设定学习率
|
1
2
3
4
5
6
7
8
9
10
|
# # 以层为单位,为不同层指定不同的学习率# ## 提取指定层对象special_layers = t.nn.ModuleList([net.classifiter[0], net.classifiter[3]])# ## 获取指定层参数idspecial_layers_params = list(map(id, special_layers.parameters()))print(special_layers_params)# ## 获取非指定层的参数idbase_params = filter(lambda p: id(p) not in special_layers_params, net.parameters())optimizer = t.optim.SGD([{'params': base_params}, {'params': special_layers.parameters(), 'lr': 0.01}], lr=0.001) |
四、在训练中动态的调整学习率
|
1
2
3
4
5
6
7
8
9
|
'''调整学习率'''# 新建optimizer或者修改optimizer.params_groups对应的学习率# # 新建optimizer更简单也更推荐,optimizer十分轻量级,所以开销很小# # 但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡# ## optimizer.param_groups:长度2的list,optimizer.param_groups[0]:长度6的字典print(optimizer.param_groups[0]['lr'])old_lr = 0.1optimizer = optim.SGD([{'params': net.features.parameters()}, {'params': net.classifiter.parameters(), 'lr': old_lr*0.1}], lr=1e-5) |
可以看到optimizer.param_groups结构,[{'params','lr', 'momentum', 'dampening', 'weight_decay', 'nesterov'},{……}],集合了优化器的各项参数。
『PyTorch』第十一弹_torch.optim优化器 每层定制参数的更多相关文章
- 『PyTorch』第十一弹_torch.optim优化器
一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__i ...
- 『PyTorch』第十三弹_torch.nn.init参数初始化
初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进 ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...
- 『PyTorch』第三弹重置_Variable对象
『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上
总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...
- 『PyTorch』第十弹_循环神经网络
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...
- 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...
- 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数
一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...
- 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究
查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...
随机推荐
- 2019.9.29 csp-s模拟测试55 反思总结
不咕咕咕是一种美德[大雾] 头一次体会到爆肝写题解??? 这次考试我们没赶上,是后来掐着时间每个人自己考的.我最后的分数能拿到152…熟悉的一题AC两题爆炸. 强烈吐槽出题人起名走心 T1联: 发现每 ...
- day36 04-Hibernate检索方式:多表连接查询
返回的是一个List集合,这个List集合的泛型是一个Object数组.最后会拿到一个里面放Object数组的List集合. HQL内连接查询,发出SQL语句查询出来的结果集被Hibernate封装成 ...
- sklearn之特征提取(文本特征)
1.引言 关于文本的提取有很多方法,本文主要探索下sklearn官方的文本特征提取功能. 2.文本特征提取 文本分析是机器学习算法的主要应用领域. 然而,原始数据,符号文字序列不能直接传递给算法,因为 ...
- linux安装软件报错: Can't locate ExtUtils/Embed.pm in @INC...
安装snmp服务, 中间报错: Can't locate ExtUtils/Embed.pm in @INC (@INC contains: /usr/local/lib64/perl5 /usr/l ...
- org.dom4j.Document 解析xml
1.Java代码 Document doc = DocumentHelper.parseText(xml); // Element rootE = doc.getRootElement(); List ...
- CSS预处理——LESS
LESS是什么? less是一门CSS预处理语言.由于CSS本身并不是程序式语言,不方便维护和扩展,没有变量.函数.作用域等概念.而LESS在CSS的基础语法之上,引入了变量.Mixin混入.运算以及 ...
- PHP生成短连接的方法
PHP生成短连接的方法.md PHP生成短连接的方法 直接贴上方法,函数可以查看手册. <?php /** 生成短网址 * @param String $url 原网址 * @return St ...
- vue-cli3.0 资源加载的优化方案
20180829 更新 今天反复试了,不用区分 测试环境还是 生产环境,统一都用 cdn 就可以了 背景 之前自己搭建了一个 vue + tp5.1 的后台项目(https://segmentfaul ...
- UWP获取任意网页加载完成后的HTML
主要思想:通过后台WebView载入指定网页,再提取出WebView中的内容 关键代码: var html = await webView.InvokeScriptAsync("eval&q ...
- HTML-DOM实例——实现带样式的表单验证
HTML样式 基于table标签来实现页面结构 <form id="form1"> <h2>增加管理员</h2> <table&g ...