一、简化前馈网络LeNet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch as t
 
 
class LeNet(t.nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.features = t.nn.Sequential(
            t.nn.Conv2d(365),
            t.nn.ReLU(),
            t.nn.MaxPool2d(22),
            t.nn.Conv2d(6165),
            t.nn.ReLU(),
            t.nn.MaxPool2d(22)
        )
        # 由于调整shape并不是一个class层,
        # 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型
        self.classifiter = t.nn.Sequential(
            t.nn.Linear(16*5*5120),
            t.nn.ReLU(),
            t.nn.Linear(12084),
            t.nn.ReLU(),
            t.nn.Linear(8410)
        )
 
    def forward(self, x):
        = self.features(x)
        = x.view(-116*5*5)
        = self.classifiter(x)
        return x
 
net = LeNet()

二、优化器基本使用方法

  1. 建立优化器实例
  2. 循环:
    1. 清空梯度
    2. 向前传播
    3. 计算Loss
    4. 反向传播
    5. 更新参数
1
2
3
4
5
6
7
8
9
10
11
from torch import optim
 
# 通常的step优化过程
optimizer = optim.SGD(params=net.parameters(), lr=1)
optimizer.zero_grad()  # net.zero_grad()
 
input_ = t.autograd.Variable(t.randn(133232))
output = net(input_)
output.backward(output)
 
optimizer.step()

三、网络模块参数定制

为不同的子网络参数不同的学习率,finetune常用,使分类器学习率参数更高,学习速度更快(理论上)。

1.经由构建网络时划分好的模组进行学习率设定,

1
2
3
# # 直接对不同的网络模块制定不同学习率
optimizer = optim.SGD([{'params': net.features.parameters()}, # 默认lr是1e-5
                       {'params': net.classifiter.parameters(), 'lr'1e-2}], lr=1e-5)

2.以网络层对象为单位进行分组,并设定学习率

1
2
3
4
5
6
7
8
9
10
# # 以层为单位,为不同层指定不同的学习率
# ## 提取指定层对象
special_layers = t.nn.ModuleList([net.classifiter[0], net.classifiter[3]])
# ## 获取指定层参数id
special_layers_params = list(map(id, special_layers.parameters()))
print(special_layers_params)
# ## 获取非指定层的参数id
base_params = filter(lambda p: id(p) not in special_layers_params, net.parameters())
optimizer = t.optim.SGD([{'params': base_params},
                         {'params': special_layers.parameters(), 'lr'0.01}], lr=0.001)

四、在训练中动态的调整学习率

1
2
3
4
5
6
7
8
9
'''调整学习率'''
# 新建optimizer或者修改optimizer.params_groups对应的学习率
# # 新建optimizer更简单也更推荐,optimizer十分轻量级,所以开销很小
# # 但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡
# ## optimizer.param_groups:长度2的list,optimizer.param_groups[0]:长度6的字典
print(optimizer.param_groups[0]['lr'])
old_lr = 0.1
optimizer = optim.SGD([{'params': net.features.parameters()},
                       {'params': net.classifiter.parameters(), 'lr': old_lr*0.1}], lr=1e-5)

可以看到optimizer.param_groups结构,[{'params','lr', 'momentum', 'dampening', 'weight_decay', 'nesterov'},{……}],集合了优化器的各项参数。

『PyTorch』第十一弹_torch.optim优化器 每层定制参数的更多相关文章

  1. 『PyTorch』第十一弹_torch.optim优化器

    一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__i ...

  2. 『PyTorch』第十三弹_torch.nn.init参数初始化

    初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进 ...

  3. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  4. 『PyTorch』第三弹重置_Variable对象

    『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...

  5. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上

    总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...

  6. 『PyTorch』第十弹_循环神经网络

    RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...

  7. 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法

    在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...

  8. 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

    一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...

  9. 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究

    查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...

随机推荐

  1. Leetcode641.Design Circular Deque设计循环双端队列

    设计实现双端队列. 你的实现需要支持以下操作: MyCircularDeque(k):构造函数,双端队列的大小为k. insertFront():将一个元素添加到双端队列头部. 如果操作成功返回 tr ...

  2. myeclipse10 java builder path libraries 添加tomcat

    Error:     The import javax.servlet cannot be resolved     The import javax.servlet.http.HttpServlet ...

  3. [Vue CLI 3] 配置解析之 indexPath

    在 vue.config.js 配置中有一个 indexPath 的配置,我们先看看它有什么用? 用来指定 index.html 最终生成的路径(相对于 outputDir) 先看看它的默认值:在文件 ...

  4. PYTHON网络爬虫与信息提取[scrapy框架应用](单元十、十一)

    scrapy 常用命令 startproject  创建一个新的工程 scrapy startproject <name>[dir] genspider    创建一个爬虫         ...

  5. console 中的格式化打印(占位符),和样式定义

    格式化打印 Gecko 9.0 (Firefox 9.0 / Thunderbird 9.0 / SeaMonkey 2.6) 首次发布对string substitutions的支持.你可以在传递给 ...

  6. spss命令数据整理中compute与record命令的区别

    spss命令数据整理中compute与record命令的区别 record修改存在的变量,或者生成新的变量 spss变量定义说明 1.Name:变量名,定义规则与其它软件中的雷同,如第一个字符必须为字 ...

  7. 2018-11-21-WPF-解决-ViewBox--不显示线的问题

    title author date CreateTime categories WPF 解决 ViewBox 不显示线的问题 lindexi 2018-11-21 09:37:53 +0800 201 ...

  8. md5小工具

    <?php$str = "123456";echo md5($str);?>

  9. 高可用Kubernetes集群原理介绍

    ■ 文/ 天云软件 云平台开发工程师 张伟 1. 背景 Kubernetes作为容器应用的管理中心,对集群内部所有容器的生命周期进行管理,结合自身的健康检查及错误恢复机制,实现了集群内部应用层的高可用 ...

  10. 关于mybatis中llike模糊查询中#和$的使用

    模糊查询: 工作中用到,写三种用法吧,第四种为大小写匹配查询 1. sql中字符串拼接 SELECT * FROM tableName WHERE name LIKE CONCAT(CONCAT('% ...