洛谷$P3877\ [TJOI2010]$打扫房间 网络流
正解:网络流
解题报告:
昂考虑把题目的约束条件详细化?就说每个格点能向四连通连边,问能否做到每个格点度数等于2?
$umm$就先黑白染色建两排点呗,然后就$S$向左侧连流量为2的边右侧向$T$连流量为2的边,然后四连通之间连流量为1的边,跑个最大流看跑满没有,然后就做完了?$QwQ$
解释下趴还是,,,毕竟我之前没解释重新看一遍我题解都没想通$QAQ$
首先找出题目的所有约束条件$QwQ$
1)每个房间进出各一次
2)每扇门最多经过一次
3)环长大于2
昂条件一等价于每个点度数等于2嘛,然后其实有了条件二就一定能满足条件三鸭,所以现在就变成,每个点度数等于2,且相邻点之间最多经过一次.
所以就$ST$分别向点连流量为2的边相邻之间连流量为1的边就欧克了$QwQ$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define t(i) edge[i].to
#define w(i) edge[i].wei
#define n(i) edge[i].nxt
#define ri register int
#define rb register int
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];~i;i=n(i)) const int N=+,M=+,inf=1e9;
char str[M];
bool zt[M][M];
struct ed{int to,nxt,wei;}edge[N<<];
int n,m,dep[N],head[N],cur[N],S,T,ed_cnt=-,mvx[]={,,,-},mvy[]={,-,,},cnt; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il int nam(ri x,ri y){return (x-)*m+y;}
il void print(ri d)
{
if(!d)return void(printf("S"));if(d>n*m)return void(printf("T"));
ri y=d%m,x=d/m+;if(!y)y=m,--x;printf("(%d , %d)",x,y);
}
il void ad(ri x,ri y,ri z)
{//printf("%d -> %d : %d\n",y,x,z);
//print(y);printf(" -> ");print(x);printf(" : %d\n",z);
edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],};head[x]=ed_cnt;}
il bool bfs()
{
queue<int>Q;Q.push(S);memset(dep,,sizeof(dep));dep[S]=;
while(!Q.empty())
{
ri nw=Q.front();Q.pop();
e(i,nw)if(w(i) && !dep[t(i)]){dep[t(i)]=dep[nw]+,Q.push(t(i));if(t(i)==T)return ;}
}
return ;
}
il int dfs(ri nw,ri flow)
{
if(nw==T || !flow)return flow;ri ret=;
for(ri &i=cur[nw];~i;i=n(i))
if(w(i) && dep[t(i)]==dep[nw]+)
{ri tmp=dfs(t(i),min(flow,w(i)));ret+=tmp,w(i)-=tmp;w(i^)+=tmp,flow-=tmp;}
return ret;
}
il int dinic(){ri ret=;while(bfs()){rp(i,S,T)cur[i]=head[i];while(int d=dfs(S,inf))ret+=d;}return ret;} int main()
{
//freopen("3877.in","r",stdin);freopen("3877.out","w",stdout);
ri tmp=read();
while(tmp--)
{
ed_cnt=-;memset(head,-,sizeof(head));n=read();m=read();cnt=;
rp(i,,n){scanf("%s",str);rp(j,,m)cnt+=(zt[i][j]=str[j-]=='.');}S=;T=n*m+;
rp(i,,n)rp(j,,m)
{
if((i+j)& && zt[i][j])
rp(k,,)
{
ri tx=i+mvx[k],ty=j+mvy[k];
if(!tx || !ty || tx>n || ty>m)continue;
if(zt[tx][ty])ad(nam(tx,ty),nam(i,j),);
}
}
rp(i,,n)rp(j,,m)if(zt[i][j]){if((i+j)&)ad(nam(i,j),S,);else ad(T,nam(i,j),);}
if(cnt&){printf("NO\n");continue;}
if(dinic()==cnt)printf("YES\n");else printf("NO\n");
}
return ;
}
洛谷$P3877\ [TJOI2010]$打扫房间 网络流的更多相关文章
- 洛谷P3877 [TJOI2010]打扫房间 解题报告
首先整理一下条件: 1.恰好进出每个需打扫的房间各一次 2.进出每个房间不能通过同一个门 (其实前两个条件是一回事) 3.要求每条路线都是一个闭合的环线 4.每条路线经过的房间数大于2 让你在一个n* ...
- P3877 [TJOI2010]打扫房间
xswl以为是个插头dp,然后发现就是个sb题 相当于就是个匹配.每个格子度数为2,所以可以匹配2个相邻的点.匹配显然的用网络流.最后check有没有不匹配的点即可. #include<bits ...
- Luogu3877 TJOI2010 打扫房间 二分图、网络流
传送门 真是菜死了模板题都不会-- 首先\(30 \times 30\)并不能插头DP,但是范围仍然很小所以考虑网络流. 注意每个点都要包含在一个回路中,那么每一个点的度数都必须为\(2\),也就是说 ...
- [TJOI2010]打扫房间
题目描述 学校新建了一批宿舍,值日生小A要把所有的空房间都打扫一遍.这些宿舍的布局很奇怪,整个建筑物里所有的房间组成一个N * M的矩阵,每个房间的东南西北四面墙上都有一个门通向隔壁房间.另外有些房间 ...
- 洛谷P2402 奶牛隐藏(网络流,二分答案,Floyd)
洛谷题目传送门 了解网络流和dinic算法请点这里(感谢SYCstudio) 题目 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛 ...
- 洛谷$P2604\ [ZJOI2010]$网络扩容 网络流
正解:网络流 解题报告: 传送门$QwQ$ 昂第一问跑个最大流就成不说$QwQ$ 然后第二问,首先原来剩下的边就成了费用为0的边?然后原来的所有边连接的两点都给加上流量为$inf$费用为$w$的边,保 ...
- 洛谷P1402 酒店之王(网络流)
### 洛谷P1402 题目链接 ### 题目大意:有 n 个人, p 间房间,q 种食物.每个人喜欢一些房间,一些食物,但每间房间.每种食物只能分配给一个人.问最大可以让多少个人满足(当且仅当分配到 ...
- 洛谷P2770 双路DP // 网络流
https://www.luogu.org/problemnew/show/P2770 第一眼看过去,觉得这不是一个经典的双路DP模型吗,将一条过去一条回来互不相交的路径看作是起点出发了两条路径一起走 ...
- 3150luogu洛谷
若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢( ...
随机推荐
- 11-1 css属性选择器
一 基础选择器 标签选择器:选择的标签的‘共性’,而不是特性 div{}.ul{}.ol{}.form{} 类选择器:.box{} id选择器:#box{} 只能选择器的特性,主要是为了js *通配符 ...
- day5-python之面向过程编程
一.面向过程编程 #1.首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路.思想,而编程思路是不依赖于具体的语言或语法的.言外之意是即使我们不依赖于函数,也可以基于面向过程的思想 ...
- 2018-8-10-添加右键使用-SublimeText-打开
title author date CreateTime categories 添加右键使用 SublimeText 打开 lindexi 2018-08-10 19:16:52 +0800 2018 ...
- @bzoj - 4380@ [POI2015] Myjnie
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 n 家洗车店从左往右排成一排,每家店都有一个正整数价格 p[ ...
- hdu 1384 Intervals (差分约束)
Problem - 1384 好歹用了一天,也算是看懂了差分约束的原理,做出第一条查分约束了. 题意是告诉你一些区间中最少有多少元素,最少需要多少个元素才能满足所有要求. 构图的方法是,(a)-> ...
- 深入理解iptables防火墙
0x00 Linux 安全性和 netfilter/iptables Linux 因其健壮性.可靠性.灵活性以及好象无限范围的可定制性而在 IT 业界变得非常受欢迎.Linux 具有许多内置的能力, ...
- laravel在终端中查看日志的方法
php artisan tail --path=/Users/henryj/workspace_php/makerlab/app/storage/logs/laravel-2015-04-22.lo ...
- Math.abs( x )
Math.abs( x ) 下面是参数的详细信息: x : 一个数字 返回值: 返回一个数字的绝对值 <html> <head> <title>JavaScript ...
- jq实现鼠标悬停高亮当前图片
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- tensorflow学习笔记(二十五):ConfigProto&GPU
tensorflow ConfigPrototf.ConfigProto一般用在创建session的时候.用来对session进行参数配置 with tf.Session(config = tf.Co ...