正解:网络流

解题报告:

传送门$QwQ$

昂考虑把题目的约束条件详细化?就说每个格点能向四连通连边,问能否做到每个格点度数等于2?

$umm$就先黑白染色建两排点呗,然后就$S$向左侧连流量为2的边右侧向$T$连流量为2的边,然后四连通之间连流量为1的边,跑个最大流看跑满没有,然后就做完了?$QwQ$

解释下趴还是,,,毕竟我之前没解释重新看一遍我题解都没想通$QAQ$

首先找出题目的所有约束条件$QwQ$

1)每个房间进出各一次

2)每扇门最多经过一次

3)环长大于2

昂条件一等价于每个点度数等于2嘛,然后其实有了条件二就一定能满足条件三鸭,所以现在就变成,每个点度数等于2,且相邻点之间最多经过一次.

所以就$ST$分别向点连流量为2的边相邻之间连流量为1的边就欧克了$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define t(i) edge[i].to
#define w(i) edge[i].wei
#define n(i) edge[i].nxt
#define ri register int
#define rb register int
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];~i;i=n(i)) const int N=+,M=+,inf=1e9;
char str[M];
bool zt[M][M];
struct ed{int to,nxt,wei;}edge[N<<];
int n,m,dep[N],head[N],cur[N],S,T,ed_cnt=-,mvx[]={,,,-},mvy[]={,-,,},cnt; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il int nam(ri x,ri y){return (x-)*m+y;}
il void print(ri d)
{
if(!d)return void(printf("S"));if(d>n*m)return void(printf("T"));
ri y=d%m,x=d/m+;if(!y)y=m,--x;printf("(%d , %d)",x,y);
}
il void ad(ri x,ri y,ri z)
{//printf("%d -> %d : %d\n",y,x,z);
//print(y);printf(" -> ");print(x);printf(" : %d\n",z);
edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],};head[x]=ed_cnt;}
il bool bfs()
{
queue<int>Q;Q.push(S);memset(dep,,sizeof(dep));dep[S]=;
while(!Q.empty())
{
ri nw=Q.front();Q.pop();
e(i,nw)if(w(i) && !dep[t(i)]){dep[t(i)]=dep[nw]+,Q.push(t(i));if(t(i)==T)return ;}
}
return ;
}
il int dfs(ri nw,ri flow)
{
if(nw==T || !flow)return flow;ri ret=;
for(ri &i=cur[nw];~i;i=n(i))
if(w(i) && dep[t(i)]==dep[nw]+)
{ri tmp=dfs(t(i),min(flow,w(i)));ret+=tmp,w(i)-=tmp;w(i^)+=tmp,flow-=tmp;}
return ret;
}
il int dinic(){ri ret=;while(bfs()){rp(i,S,T)cur[i]=head[i];while(int d=dfs(S,inf))ret+=d;}return ret;} int main()
{
//freopen("3877.in","r",stdin);freopen("3877.out","w",stdout);
ri tmp=read();
while(tmp--)
{
ed_cnt=-;memset(head,-,sizeof(head));n=read();m=read();cnt=;
rp(i,,n){scanf("%s",str);rp(j,,m)cnt+=(zt[i][j]=str[j-]=='.');}S=;T=n*m+;
rp(i,,n)rp(j,,m)
{
if((i+j)& && zt[i][j])
rp(k,,)
{
ri tx=i+mvx[k],ty=j+mvy[k];
if(!tx || !ty || tx>n || ty>m)continue;
if(zt[tx][ty])ad(nam(tx,ty),nam(i,j),);
}
}
rp(i,,n)rp(j,,m)if(zt[i][j]){if((i+j)&)ad(nam(i,j),S,);else ad(T,nam(i,j),);}
if(cnt&){printf("NO\n");continue;}
if(dinic()==cnt)printf("YES\n");else printf("NO\n");
}
return ;
}

洛谷$P3877\ [TJOI2010]$打扫房间 网络流的更多相关文章

  1. 洛谷P3877 [TJOI2010]打扫房间 解题报告

    首先整理一下条件: 1.恰好进出每个需打扫的房间各一次 2.进出每个房间不能通过同一个门 (其实前两个条件是一回事) 3.要求每条路线都是一个闭合的环线 4.每条路线经过的房间数大于2 让你在一个n* ...

  2. P3877 [TJOI2010]打扫房间

    xswl以为是个插头dp,然后发现就是个sb题 相当于就是个匹配.每个格子度数为2,所以可以匹配2个相邻的点.匹配显然的用网络流.最后check有没有不匹配的点即可. #include<bits ...

  3. Luogu3877 TJOI2010 打扫房间 二分图、网络流

    传送门 真是菜死了模板题都不会-- 首先\(30 \times 30\)并不能插头DP,但是范围仍然很小所以考虑网络流. 注意每个点都要包含在一个回路中,那么每一个点的度数都必须为\(2\),也就是说 ...

  4. [TJOI2010]打扫房间

    题目描述 学校新建了一批宿舍,值日生小A要把所有的空房间都打扫一遍.这些宿舍的布局很奇怪,整个建筑物里所有的房间组成一个N * M的矩阵,每个房间的东南西北四面墙上都有一个门通向隔壁房间.另外有些房间 ...

  5. 洛谷P2402 奶牛隐藏(网络流,二分答案,Floyd)

    洛谷题目传送门 了解网络流和dinic算法请点这里(感谢SYCstudio) 题目 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛 ...

  6. 洛谷$P2604\ [ZJOI2010]$网络扩容 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 昂第一问跑个最大流就成不说$QwQ$ 然后第二问,首先原来剩下的边就成了费用为0的边?然后原来的所有边连接的两点都给加上流量为$inf$费用为$w$的边,保 ...

  7. 洛谷P1402 酒店之王(网络流)

    ### 洛谷P1402 题目链接 ### 题目大意:有 n 个人, p 间房间,q 种食物.每个人喜欢一些房间,一些食物,但每间房间.每种食物只能分配给一个人.问最大可以让多少个人满足(当且仅当分配到 ...

  8. 洛谷P2770 双路DP // 网络流

    https://www.luogu.org/problemnew/show/P2770 第一眼看过去,觉得这不是一个经典的双路DP模型吗,将一条过去一条回来互不相交的路径看作是起点出发了两条路径一起走 ...

  9. 3150luogu洛谷

    若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢( ...

随机推荐

  1. @雅礼集训01/06 - T3@ math

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给出 n, m, x,你需要求出下列式子的值: \[\sum_{ ...

  2. poj 3334 Connected Gheeves (Geometry + BInary Search)

    3334 -- Connected Gheeves 题意是,给出两个尖形的相连的容器,要求向其中灌水.它们具有日常的物理属性,例如两个容器中水平面高度相同以及水高于容器顶部的时候就会溢出.开始的时候打 ...

  3. HDU 1754线段树基本操作,建树,更新,查询

    代码线段树入门整理中有介绍. #include<cstdio> #include<algorithm> #include<cstring> #include< ...

  4. Activiti6-快速开始

    下载 https://www.activiti.org/download-links 快速开始 https://www.activiti.org/quick-start 用户指南 https://ww ...

  5. Mule ESB 自带例子hello初体验

    1 配置的流的效果图 2 应用配置文件hello.xml内容 <?xml version="1.0" encoding="UTF-8"?> < ...

  6. hadoop的6个进程启动不全,请试 比如datanode没有启动

      赋给hadoop用户hadoop-1.2.1读写权限 [root@master usr]# chown -R hadoop121:hadoop121 hadoop-1.2.1/   折腾了两个小时 ...

  7. webpack学习(五)entry和output的基础配置

    1:entry和output就是打包的入口和出口的两个对象.但是如果入口文件就一个的话(应该说只希望打包出一个脚本文件), entry直接跟一个字符串(入口文件路径)就可以了.如:entry : &q ...

  8. SVN 树冲突解决详解

    https://blog.csdn.net/xgf415/article/details/75196714 SVN 冲突包括 内容冲突:当两名(或更多)开发人员修改了同一个文件中相邻或相同的行时就会发 ...

  9. 21个项目玩转深度学习:基于TensorFlow的实践详解06—人脸检测和识别——项目集锦

    摘自:https://github.com/azuredsky/mtcnn-2 mtcnn - Multi-task CNN library language dependencies comment ...

  10. SpringDataJPA+QueryDSL玩转态动条件/投影查询

    在本文之前,本应当专门有一篇博客讲解SpringDataJPA使用自带的Specification+JpaSpecificationExecutor去说明如何玩条件查询,但是看到新奇.编码更简单易懂的 ...