期望dp+高斯消元+bfs——hdu4418
高斯消元又弄了半天。。
注意只要能建立矩阵,那就必定有解,所以高斯消元里可以直接return 1
#include<bits/stdc++.h>
using namespace std; const int maxn = ;
const double esp = 1e-; int n,m,x,y,d;
double p[maxn],a[maxn][maxn],b[maxn];
int equ,var; int Gauss(){
for(int i=;i<n;i++){
int maxr=i;
for(int j=i+;j<n;j++)
if(fabs(a[j][i])>fabs(a[maxr][i]))
maxr=j;
if(fabs(a[maxr][i])<esp)continue;
if(maxr!=i)
swap(a[maxr],a[i]);swap(b[maxr],b[i]); for(int j=i+;j<n;j++){
if(fabs(a[j][i])<esp)continue;
double rate=a[j][i]/a[i][i];
for(int k=i;k<n;k++)
a[j][k]-=rate*a[i][k];
b[j]-=rate*b[i];
}
}
for(int i=n-;i>=;i--){
if(fabs(a[i][i])<esp)continue;
for(int j=i+;j<n;j++)
b[i]-=a[i][j]*b[j];
b[i]/=a[i][i];
}
return ;
} int id[maxn],cnt;
void bfs(int s){
memset(id,-,sizeof id);
cnt=;
queue<int>q;
q.push(s);id[s]=cnt++;
while(q.size()){
int x=q.front();q.pop();
for(int i=;i<=m;i++){
if(fabs(p[i])<esp)continue;
int y=(x+i)%n;
if(id[y]==-)
q.push(y),id[y]=cnt++;
}
}
} int main(){
int t;cin>>t;
while(t--){
scanf("%d%d%d%d%d",&n,&m,&y,&x,&d); for(int i=;i<=m;i++)
scanf("%lf",&p[i]),p[i]/=;
if(x==y){puts("0.00");continue;} n=*(n-);
if(d==)x=n-x;
bfs(x);
if(id[y]==- && id[n-y]==-){
puts("Impossible !");continue;
}
equ=var=cnt; memset(a,,sizeof a);
memset(b,,sizeof b);
for(int i=;i<n;i++){
if(id[i]==-)continue;
a[id[i]][id[i]]=;
if(i==y || i==n-y)continue;//到了终点y
for(int j=;j<=m;j++){
int y=(i+j)%n;
if(id[y]!=-){
a[id[i]][id[y]]-=p[j];
b[id[i]]+=j*p[j];
}
}
}
if(Gauss())
printf("%.2lf\n",b[id[x]]);
else printf("Impossible !\n");
}
}
期望dp+高斯消元+bfs——hdu4418的更多相关文章
- BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...
- hdu4418 Time travel 【期望dp + 高斯消元】
题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...
- HDU4418 Time travel(期望dp 高斯消元)
题意 题目链接 Sol mdzz这题真的太恶心了.. 首先不难看出这就是个高斯消元解方程的板子题 \(f[x] = \sum_{i = 1}^n f[to(x + i)] * p[i] + ave\) ...
- ZJUT 1423 地下迷宫(期望DP&高斯消元)
地下迷宫 Time Limit:1000MS Memory Limit:32768K Description: 由于山体滑坡,DK被困在了地下蜘蛛王国迷宫.为了抢在DH之前来到TFT,DK必须尽快走 ...
- HDU 2262 Where is the canteen 期望dp+高斯消元
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...
- 【noi2019集训题1】 脑部进食 期望dp+高斯消元
题目大意:有n个点,m条有向边,每条边上有一个小写字母. 有一个人从1号点开始在这个图上随机游走,游走过程中他会按顺序记录下走过的边上的字符. 如果在某个时刻,他记录下的字符串中,存在一个子序列和S2 ...
- LightOJ 1151 Snakes and Ladders 期望dp+高斯消元
题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定 而且 ...
- P4457-[BJOI2018]治疗之雨【期望dp,高斯消元】
正题 题目链接:https://www.luogu.com.cn/problem/P4457 题目大意 开始一个人最大生命值为\(n\),剩余\(hp\)点生命,然后每个时刻如果生命值没有满那么有\( ...
- Codeforces.24D.Broken robot(期望DP 高斯消元)
题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...
随机推荐
- DOM中常见的元素获取方式
1.getElementById获取元素 返回的是一个元素对象 var timer = document.getElementById('time'); console.dir 打印返回元 ...
- 使用net模块创建tcp服务器
demo /** * Created by ZXW on 2018/4/6. */ var net=require('net'); ; const HOST='localhost'; var clie ...
- leetcode-158周赛-5222-分割字符串
题目描述: 自己的提交: class Solution: def balancedStringSplit(self, s: str) -> int: if not s:return 0 res ...
- Java递归调用
6.递归调用 方法的递归调用就是方法自身调用自身. 以下程序因为递归没有结束的条件,所以一直压栈,没有弹栈,导致栈内存溢出错误!所以递归必须要有结束条件. public class Recursion ...
- Annotation详解
转自:http://www.doc88.com/p-995532241886.html 首先我们定义一个简单的注解 package com.qjy.annotation; import java.la ...
- mysql 第一次启动及常用命令
启动 mysql -u root -p 进入后 # 显示有几个数据库 mysql> show databases; +--------------------+ | Database | +-- ...
- Java-Class-C:com.alibaba.fastjosn.JSON
ylbtech-Java-Class-C:com.alibaba.fastjosn.JSON 1.返回顶部 1.1.import com.alibaba.fastjson.JSON;import co ...
- Django中的HttpResponse和JsonResponse
Django中的HttpResponse和JsonResponse 我们在编写一些借口函数的时候,经常需要给调用者返回json格式的数据,那么如何返回可直接解析的数据呢? 首先第一种方式: from ...
- centos6 & centos7搭建ntp服务器
原理 NTP(Network TimeProtocol,网络时间协议)是用来使计算机时间同步的一种协议.它可以使计算机对其服务器或时钟源做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1 ...
- Python3 From Zero——{最初的意识:004~迭代器和生成器}
一.反向迭代:reversed() >>> a [1, 2, 3, 4] >>> for x in reversed(a): ... print(x, end=' ...