逻辑回归,多分类推广算法softmax回归中
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92
简介
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合。(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护。http://yann.lecun.com/exdb/mnist/ )
回想一下在 logistic 回归中,我们的训练集由 个已标记的样本构成:
,其中输入特征
。(我们对符号的约定如下:特征向量
的维度为
,其中
对应截距项 。) 由于 logistic 回归是针对二分类问题的,因此类标记
。假设函数(hypothesis function) 如下:
我们将训练模型参数 ,使其能够最小化代价函数 :
在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标 可以取
个不同的值(而不是 2 个)。因此,对于训练集
,我们有
。(注意此处的类别下标从 1 开始,而不是 0)。例如,在 MNIST 数字识别任务中,我们有
个不同的类别。
对于给定的测试输入 ,我们想用假设函数针对每一个类别j估算出概率值
。也就是说,我们想估计
的每一种分类结果出现的概率。因此,我们的假设函数将要输出一个
维的向量(向量元素的和为1)来表示这
个估计的概率值。 具体地说,我们的假设函数
形式如下:
其中 是模型的参数。请注意
这一项对概率分布进行归一化,使得所有概率之和为 1 。
为了方便起见,我们同样使用符号 来表示全部的模型参数。在实现Softmax回归时,将
用一个
的矩阵来表示会很方便,该矩阵是将
按行罗列起来得到的,如下所示:
代价函数
现在我们来介绍 softmax 回归算法的代价函数。在下面的公式中, 是示性函数,其取值规则为:
值为真的表达式
,
值为假的表达式
。举例来说,表达式
的值为1 ,
的值为 0。我们的代价函数为:
值得注意的是,上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:
可以看到,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的 个可能值进行了累加。注意在Softmax回归中将
分类为类别
的概率为:
.
对于 的最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。经过求导,我们得到梯度公式如下:
让我们来回顾一下符号 "" 的含义。
本身是一个向量,它的第
个元素
是
对
的第
个分量的偏导数。
有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化 。 例如,在梯度下降法的标准实现中,每一次迭代需要进行如下更新:
(
)。
当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。具体来说,就是和权重衰减(weight decay)一起使用。我们接下来介绍使用它的动机和细节。
Softmax回归模型参数化的特点
Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量 中减去了向量
,这时,每一个
都变成了
(
)。此时假设函数变成了以下的式子:
换句话说,从 中减去
完全不影响假设函数的预测结果!这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说, Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数
。
进一步而言,如果参数 是代价函数
的极小值点,那么
同样也是它的极小值点,其中
可以为任意向量。因此使
最小化的解不是唯一的。(有趣的是,由于
仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)
注意,当 时,我们总是可以将
替换为
(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量
(或者其他
中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的
个参数
(其中
),我们可以令
,只优化剩余的
个参数,这样算法依然能够正常工作。
在实际应用中,为了使算法实现更简单清楚,往往保留所有参数 ,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。
权重衰减
我们通过添加一个权重衰减项 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:
有了这个权重衰减项以后 (),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为
是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。
为了使用优化算法,我们需要求得这个新函数 的导数,如下:
通过最小化 ,我们就能实现一个可用的 softmax 回归模型。
Softmax回归与Logistic 回归的关系
当类别数 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当
时,softmax 回归的假设函数为:
利用softmax回归参数冗余的特点,我们令 ,并且从两个参数向量中都减去向量
,得到:
因此,用 来表示
,我们就会发现 softmax 回归器预测其中一个类别的概率为
,另一个类别概率的为
,这与 logistic回归是一致的。
Softmax 回归 vs. k 个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
中英文对照
- Softmax回归 Softmax Regression
- 有监督学习 supervised learning
- 无监督学习 unsupervised learning
- 深度学习 deep learning
- logistic回归 logistic regression
- 截距项 intercept term
- 二元分类 binary classification
- 类型标记 class labels
- 估值函数/估计值 hypothesis
- 代价函数 cost function
- 多元分类 multi-class classification
- 权重衰减 weight decay
逻辑回归,多分类推广算法softmax回归中的更多相关文章
- 《转》Logistic回归 多分类问题的推广算法--Softmax回归
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...
- Softmax回归——logistic回归模型在多分类问题上的推广
Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...
- LR多分类推广 - Softmax回归*
LR是一个传统的二分类模型,它也可以用于多分类任务,其基本思想是:将多分类任务拆分成若干个二分类任务,然后对每个二分类任务训练一个模型,最后将多个模型的结果进行集成以获得最终的分类结果.一般来说,可以 ...
- DeepLearning之路(二)SoftMax回归
Softmax回归 1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试 ...
- 机器学习之线性回归---logistic回归---softmax回归
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...
- 从Softmax回归到Logistic回归
Softmax回归是Logistic回归在多分类问题上的推广,是有监督的. 回归的假设函数(hypothesis function)为,我们将训练模型参数,使其能够最小化代价函数: 在Softmax回 ...
- UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...
- Softmax回归 softMax回归与logistic回归的关系
简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分 ...
- 【深度学习】softmax回归——原理、one-hot编码、结构和运算、交叉熵损失
1. softmax回归是分类问题 回归(Regression)是用于预测某个值为"多少"的问题,如房屋的价格.患者住院的天数等. 分类(Classification)不是问&qu ...
随机推荐
- CentOS 7 挂载ntfs分区!
装好centos7发现可以看到分区,可是打不开,还是得用ntfs-3g 官网下好 http://www.tuxera.com/community/ntfs-3g-download/ 然后解压tar - ...
- JDK的下载及安装
JDK下载及安装 JDK的下载 官网下载 点击进入之后,显示的是当前版本最新的,点击downloads,选择适合自己电脑的版本下载 下载历史版本要一直往下拉,找到如图: 点击之后会显示以往的版本 环境 ...
- bootstrap Modal 模态框垂直居中
解决 Modal 垂直居中的问题,上网找了好多博客,有好多说改源码的,这个并没有实践. 但发现另一种解决办法,可以实现,代码如下: function centerModals(){ $('.modal ...
- leetcode.字符串.242有效的字母异位词-Java
1. 具体题目 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词. 注:判断两个字符串包含的字母是否完全一样. 示例 1: 输入: s = "anagram&q ...
- 监控数据库SqlServer
监控数据库的连接数select COUNT( * ) from master.dbo.sysprocesses select COUNT( * ) from master.dbo.sysprocess ...
- jsk
题目描述 码队的女朋友非常喜欢玩某款手游,她想让码队带他上分.但是码队可能不会带青铜段位的女朋友上分,因为码队的段位太高(已经到达王者),恐怕不能和他的女朋友匹配游戏. 码队的女朋友有些失落,她希望能 ...
- jetson更换源
参考链接:https://blog.csdn.net/qq_36396941/article/details/88903094 Nano的镜像默认是国外的源,速度很慢,国内的源有的上不去,有的包无法安 ...
- HTML5和CSS3工具资源汇总
HTML5 & CSS3 准备就绪 该网站通过扇形图表的形式展现了从08年到10年以来各大浏览器对HTML5和CSS3的支持情况.发展势头还是很可观的. HTML5安全手册 CSS3按钮生成器 ...
- javascript事件委托与"坑"
问题 这是在工作中遇到的一个问题: 一个textarea文本框,需要动态监听输入文本个数 方案 通过谷歌查到一种完美的兼容方法 "如果使用 onkeydown.onkeypress.onke ...
- Logstash详解之——filter模块-grok插件
1. grok插件:能匹配一切数据,但是性能和对资源的损耗也很大. grok内置字段类型参见: https://blog.csdn.net/cui929434/article/details/9439 ...