spark1.0.2读取hbase(CDH0.96.1)上的数据
基本环境:
我是在win7环境下,spark1.0.2,HBase0.9.6.1
使用工具:IDEA14.1, scala 2.11.6, sbt。我现在是测试环境使用的是单节点
1、使用IDEA创建一个sbt的工程后,在build.sbt文件加入配置文件
libraryDependencies += "org.apache.spark" % "spark-core_2.10" % "1.0.2" % "provided" libraryDependencies += "org.apache.spark" % "spark-streaming_2.10" % "1.0.2" % "provided" libraryDependencies += "org.apache.hbase" % "hbase-common" %"0.96.1.1-hadoop2" % "provided" libraryDependencies += "org.apache.hbase" % "hbase-client" % "0.96.1.1-hadoop2" % "provided" libraryDependencies += "org.apache.hbase" % "hbase-server" % "0.96.1.1-hadoop2" % "provided"
2、创建一个scala Object
对应的路径和表名,列族自己修改
package cn.rcz.bigdata
import org.apache.spark.SparkContext
import org.apache.spark._
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.HTableDescriptor
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.HColumnDescriptor
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.client.HTable
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.client.Delete /**
* Created by ptbx on 2015/4/7.
*/
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.SparkContext._ object Test01 extends Serializable{
def main(args: Array[String]) {
/* if (args.length != 2) {
System.err.println("Usage: LogAnalyzer <input> <output>")
System.exit(1)
}*/
val sc = new SparkContext("spark://master:7077", "SparkHBase01") val conf = HBaseConfiguration.create()
conf.set("hbase.zookeeper.property.clientPort", "2181")
conf.set("hbase.zookeeper.quorum", "master")
conf.set("hbase.master", "master:60000")
conf.addResource("/home/hadoop/hbase-0.96.1.1-cdh5.0.2/conf/hbase-site.xml")
conf.set(TableInputFormat.INPUT_TABLE, "carInfo") val admin = new HBaseAdmin(conf)
if (!admin.isTableAvailable("messInfo")) {
print("Table Not Exists! Create Table")
val tableDesc = new HTableDescriptor("messInfo")
tableDesc.addFamily(new HColumnDescriptor("messInfo".getBytes()))
admin.createTable(tableDesc)
} val hbaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result]) val count = hbaseRDD.count()
println("HBase RDD Count:" + count)
hbaseRDD.cache() val res = hbaseRDD.take(count.toInt)
for (j <- 1 until count.toInt) {
println("j: " + j)
var rs = res(j - 1)._2
var kvs = rs.raw
for (kv <- kvs)
println("rowkey:" + new String(kv.getRow()) +
" cf:" + new String(kv.getFamily()) +
" column:" + new String(kv.getQualifier()) +
" value:" + new String(kv.getValue()))
}
System.exit(0) }
}
3:打包成jar 提交运行
在doc下, 进入文件目录后,输入sbt
再次输入compile,进入编译然后在输入package
打包后的jar包在项目的out文件夹里面
4、提交到spark上运行
spark 的运行方式有3种,后续文件会有补充
sh spark-submit --class cn.szkj.bigdata.Test01 --master local[3] /home/hadoop/work.jar
把输入的值当作参数修改后
def main(args: Array[String]) {
if (args.length != 9) {
System.err.println("Usage: LogAnalyzer <masterAddress> <jobname> <masterName> <masterName> <hbase-core-site.xml dir> <tableName> <tableName> <columnFiamly> <columnFiamly>") System.exit(1)
} // val sc = new SparkContext("spark://master:7077", "SparkHBase")
val sc = new SparkContext(args(0), args(1))
val conf = HBaseConfiguration.create() conf.set("hbase.zookeeper.property.clientPort", "2181")
conf.set("hbase.zookeeper.quorum", args(2))
conf.set("hbase.master", args(3)+":60000")
conf.addResource(args(4))
conf.set(TableInputFormat.INPUT_TABLE, args(5)) val admin = new HBaseAdmin(conf)
if (!admin.isTableAvailable(args(6))) {
print("Table Not Exists! Create Table")
val tableDesc = new HTableDescriptor(args(7))
tableDesc.addFamily(new HColumnDescriptor(args(8).getBytes())) } val hbaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result]) val count = hbaseRDD.count()
println("HBase RDD Count:" + count)
hbaseRDD.cache() val res = hbaseRDD.take(count.toInt)
for (j <- 1 to count.toInt) { //to 是查询所有记录, until 查询单条记录
println("j: " + j)
var rs = res(j - 1)._2
var kvs = rs.raw
for (kv <- kvs)
println("rowkey:" + new String(kv.getRow()) +
" cf:" + new String(kv.getFamily()) +
" column:" + new String(kv.getQualifier()) +
" value:" + new String(kv.getValue()))
}
for (j <- 1 until count.toInt){ }
System.exit(0)
}
spark1.0.2读取hbase(CDH0.96.1)上的数据的更多相关文章
- Android使用OpenGL ES2.0显示YUV,您的手机上的数据要解决两个方面的坐标
如果说 ,我不知道,如果你不明白这个话题.连接到:http://blog.csdn.net/wangchenggggdn/article/details/8896453(下称链接①), 里面评论有非常 ...
- Spark 读取HBase和SolrCloud数据
Spark1.6.2读取SolrCloud 5.5.1 //httpmime-4.4.1.jar // solr-solrj-5.5.1.jar //spark-solr-2.2.2-20161007 ...
- Spark 读取HBase数据
Spark1.6.2 读取 HBase 1.2.3 //hbase-common-1.2.3.jar //hbase-protocol-1.2.3.jar //hbase-server-1.2.3.j ...
- Spark-1.0.0 standalone分布式安装教程
Spark目前支持多种分布式部署方式:一.Standalone Deploy Mode:二Amazon EC2.:三.Apache Mesos:四.Hadoop YARN.第一种方式是单独部署,不需要 ...
- SparkSQL读取HBase数据
这里的SparkSQL是指整合了Hive的spark-sql cli(关于SparkSQL和Hive的整合,见文章后面的参考阅读). 本质上就是通过Hive访问HBase表,具体就是通过hive-hb ...
- Spark1.0.0 编程模型
Spark Application能够在集群中并行执行,其关键是抽象出RDD的概念(详见RDD 细解),也使得Spark Application的开发变得简单明了.下图浓缩了Spark的编程模型. w ...
- Spark读取Hbase中的数据
大家可能都知道很熟悉Spark的两种常见的数据读取方式(存放到RDD中):(1).调用parallelize函数直接从集合中获取数据,并存入RDD中:Java版本如下: JavaRDD<Inte ...
- Spark1.0新特性-->Spark SQL
Spark1.0出来了,变化还是挺大的,文档比以前齐全了,RDD支持的操作比以前多了一些,Spark on yarn功能我居然跑通了.但是最最重要的就是多了一个Spark SQL的功能,它能对RDD进 ...
- ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1伪分布式环境部署
目录: 一.hadoop2.2.0.zookeeper3.4.5.hbase0.96.2.hive0.13.1都是什么? 二.这些软件在哪里下载? 三.如何安装 1.安装JDK 2.用parallel ...
随机推荐
- ACdream 1157 (cdq分治)
题目链接 Segments Time Limit: 4000/2000MS (Java/Others)Memory Limit: 20000/10000KB (Java/Others) Problem ...
- 使用wordpress搭建的网站如何去掉域名中的wordpess
我们搭建好的网站当以文件夹的形式把wordpress程序放在空间的根目录时,访问的时候要加上文件夹名,访问地址就是:http://www.xxx.com/wordpress,直接用域名是无法访问,解决 ...
- CSS:CSS 表格
ylbtech-CSS:CSS 表格 1.返回顶部 1. CSS 表格 使用 CSS 可以使 HTML 表格更美观. Company Contact Country Alfreds Futterkis ...
- JAVA StringUtils 坑汇总
1 StringUtils.split() VS String.split(); public static void main(String args[]){ String r ...
- Spring MVC源码分析(二):SpringMVC的DispatcherServlet的设计与实现
概述 DispatcherServlet是SpringMVC的一个前端控制器,是MVC架构中的C,即controller的实现,用于拦截这个web应用的所有请求,具体为在web.xml中配置这个s ...
- java-day21
# DQL:查询语句 1. 排序查询 * 语法:order by 子句 * order by 排序字段1 排序方式1 , 排序字段2 排序方式2... ...
- python获取全部股票每日基本面指标,用于选股分析、报表展示等
接口:daily_basic 更新时间:交易日每日15点-17点之间 描述:获取全部股票每日重要的基本面指标,可用于选股分析.报表展示等. 积分:用户需要至少300积分才可以调取,具体请参阅本文最下方 ...
- 天道神诀--samba和NFS部署
samba yum -y install samba samba-client rpm -qa |grep samba service smb start(445端口) service nmb sta ...
- 从模块到python文件的两种用法
01模块的四种形式 模块 就是从逻辑上组织python代码(变量,函数,类,逻辑:实现一个功能),本质就是.py结尾的python文件(文件名是test.py的话,它的对应模块名就是test) 包 用 ...
- vim的基本快捷操作(一)
一.光标移动 ^ 到该行第一个非空格字符处. + 到下一行的第一个非空格字符处 - 到上一行的第一个非空格字符处 `. 到上次修改点 <c-o> 到上次所停留位置, <c-i> ...