NMF和SVD在推荐系统中的应用(实战)
本文以NMF和经典SVD为例,讲一讲矩阵分解在推荐系统中的应用。
数据
| item\user | Ben | Tom | John | Fred |
|---|---|---|---|---|
| item 1 | 5 | 5 | 0 | 5 |
| item 2 | 5 | 0 | 3 | 4 |
| item 3 | 3 | 4 | 0 | 3 |
| item 4 | 0 | 0 | 5 | 3 |
| item 5 | 5 | 4 | 4 | 5 |
| item 6 | 5 | 4 | 5 | 5 |
| user\item | item 1 | item 2 | item 3 | item 4 | item 5 | item 6 |
|---|---|---|---|---|---|---|
| Ben | 5 | 5 | 3 | 0 | 5 | 5 |
| Tom | 5 | 0 | 4 | 0 | 4 | 4 |
| John | 0 | 3 | 0 | 5 | 4 | 5 |
| Fred | 5 | 4 | 3 | 3 | 5 | 5 |
NMF
关于NMF,在浅谈隐语义模型和NMF已经有过介绍。
用户和物品的主题分布
#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np
from sklearn.decomposition import NMF
import matplotlib.pyplot as plt
RATE_MATRIX = np.array(
[[5, 5, 3, 0, 5, 5],
[5, 0, 4, 0, 4, 4],
[0, 3, 0, 5, 4, 5],
[5, 4, 3, 3, 5, 5]]
)
nmf = NMF(n_components=2) # 设有2个隐主题
user_distribution = nmf.fit_transform(RATE_MATRIX)
item_distribution = nmf.components_
print '用户的主题分布:'
print user_distribution
print '物品的主题分布:'
print item_distribution
运行后输出:
用户的主题分布:
[[ 2.20884275 0.84137492]
[ 2.08253282 -0. ]
[-0. 3.18154406]
[ 1.84992603 1.60839505]]
物品的主题分布:
[[ 2.4129931 1.02524235 1.62258152 0. 1.80111078 1.69591943]
[ 0.0435741 1.13506094 0. 1.54526337 1.21253494 1.48756118]]
可视化物品的主题分布:
#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np
from sklearn.decomposition import NMF
import matplotlib.pyplot as plt
RATE_MATRIX = np.array(
[[5, 5, 3, 0, 5, 5],
[5, 0, 4, 0, 4, 4],
[0, 3, 0, 5, 4, 5],
[5, 4, 3, 3, 5, 5]]
)
nmf = NMF(n_components=2)
user_distribution = nmf.fit_transform(RATE_MATRIX)
item_distribution = nmf.components_
item_distribution = item_distribution.T
plt.plot(item_distribution[:, 0], item_distribution[:, 1], "b*")
plt.xlim((-1, 3))
plt.ylim((-1, 3))
plt.title(u'the distribution of items (NMF)')
count = 1
for item in item_distribution:
plt.text(item[0], item[1], 'item '+str(count), bbox=dict(facecolor='red', alpha=0.2),)
count += 1
plt.show()
结果:
从距离的角度来看,item 5和item 6比较类似;从余弦相似度角度看,item 2、5、6 比较相似,item 1、3比较相似。
可视化用户的主题分布:
#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np
from sklearn.decomposition import NMF
import matplotlib.pyplot as plt
RATE_MATRIX = np.array(
[[5, 5, 3, 0, 5, 5],
[5, 0, 4, 0, 4, 4],
[0, 3, 0, 5, 4, 5],
[5, 4, 3, 3, 5, 5]]
)
nmf = NMF(n_components=2)
user_distribution = nmf.fit_transform(RATE_MATRIX)
item_distribution = nmf.components_
users = ['Ben', 'Tom', 'John', 'Fred']
zip_data = zip(users, user_distribution)
plt.title(u'the distribution of users (NMF)')
plt.xlim((-1, 3))
plt.ylim((-1, 4))
for item in zip_data:
user_name = item[0]
data = item[1]
plt.plot(data[0], data[1], "b*")
plt.text(data[0], data[1], user_name, bbox=dict(facecolor='red', alpha=0.2),)
plt.show()
结果:

从距离的角度来看,Fred、Ben、Tom的口味差不多;从余弦相似度角度看,Fred、Ben、Tom的口味还是差不多。
如何推荐
现在对于用户A,如何向其推荐物品呢?
方法1: 找出与用户A最相似的用户B,将B评分过的、评分较高、A没评分过的的若干物品推荐给A。
方法2: 找出用户A评分较高的若干物品,找出与这些物品相似的、且A没评分的若干物品推荐给A。
方法3: 找出用户A最感兴趣的k个主题,找出最符合这k个主题的、且A没评分的若干物品推荐给A。
方法4: 由NMF得到的两个矩阵,重建评分矩阵。例如:
#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np
from sklearn.decomposition import NMF
import matplotlib.pyplot as plt
RATE_MATRIX = np.array(
[[5, 5, 3, 0, 5, 5],
[5, 0, 4, 0, 4, 4],
[0, 3, 0, 5, 4, 5],
[5, 4, 3, 3, 5, 5]]
)
RATE_MATRIX[1, 2] = 0 # 对评分矩阵略做修改
print '新评分矩阵:'
print RATE_MATRIX
nmf = NMF(n_components=2)
user_distribution = nmf.fit_transform(RATE_MATRIX)
item_distribution = nmf.components_
reconstruct_matrix = np.dot(user_distribution, item_distribution)
filter_matrix = RATE_MATRIX < 1e-6 # 小于0
print '重建矩阵,并过滤掉已经评分的物品:'
print reconstruct_matrix*filter_matrix
运行结果:
新评分矩阵:
[[5 5 3 0 5 5]
[5 0 0 0 4 4]
[0 3 0 5 4 5]
[5 4 3 3 5 5]]
重建矩阵,并过滤掉已经评分的物品:
[[ 0. 0. 0. 0.80443133 0. 0. ]
[ 0. 2.19148602 1.73560797 0. 0. 0. ]
[ 0.02543568 0. 0.48692891 0. 0. 0. ]
[ 0. 0. 0. 0. 0. 0. ]]
对于Tom(评分矩阵的第2行),其未评分过的物品是item 2、item 3、item 4。item 2的推荐值是2.19148602,item 3的推荐值是1.73560797,item 4的推荐值是0,若要推荐一个物品,推荐item 2。
如何处理有评分记录的新用户
NMF是将非负矩阵V分解为两个非负矩阵W和H:
V = W×H
在本文上面的实现中,V对应评分矩阵,W是用户的主题分布,H是物品的主题分布。
对于有评分记录的新用户,如何得到其主题分布?
方法1: 有评分记录的新用户的评分数据放入评分矩阵中,使用NMF处理新的评分矩阵。
方法2: 物品的主题分布矩阵H保持不变,将V更换为新用户的评分组成的行向量,求W即可。
下面尝试一下方法2。
设新用户Bob的评分记录为:
[5,5,0,0,0,5]
#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np
from sklearn.decomposition import NMF
import matplotlib.pyplot as plt
RATE_MATRIX = np.array(
[[5, 5, 3, 0, 5, 5],
[5, 0, 4, 0, 4, 4],
[0, 3, 0, 5, 4, 5],
[5, 4, 3, 3, 5, 5]]
)
nmf = NMF(n_components=2)
user_distribution = nmf.fit_transform(RATE_MATRIX)
item_distribution = nmf.components_
bob = [5, 5, 0, 0, 0, 5]
print 'Bob的主题分布:'
print nmf.transform(bob)
运行结果是:
Bob的主题分布:
[[ 1.37800534 0.69236738]]

经典SVD
关于SVD的一篇好文章:强大的矩阵奇异值分解(SVD)及其应用。
相关分析与上面类似,这里就直接上代码了。
#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np
from scipy.sparse.linalg import svds
from scipy import sparse
import matplotlib.pyplot as plt
def vector_to_diagonal(vector):
"""
将向量放在对角矩阵的对角线上
:param vector:
:return:
"""
if (isinstance(vector, np.ndarray) and vector.ndim == 1) or \
isinstance(vector, list):
length = len(vector)
diag_matrix = np.zeros((length, length))
np.fill_diagonal(diag_matrix, vector)
return diag_matrix
return None
RATE_MATRIX = np.array(
[[5, 5, 3, 0, 5, 5],
[5, 0, 4, 0, 4, 4],
[0, 3, 0, 5, 4, 5],
[5, 4, 3, 3, 5, 5]]
)
RATE_MATRIX = RATE_MATRIX.astype('float')
U, S, VT = svds(sparse.csr_matrix(RATE_MATRIX), k=2, maxiter=200) # 2个隐主题
S = vector_to_diagonal(S)
print '用户的主题分布:'
print U
print '奇异值:'
print S
print '物品的主题分布:'
print VT
print '重建评分矩阵,并过滤掉已经评分的物品:'
print np.dot(np.dot(U, S), VT) * (RATE_MATRIX < 1e-6)
运行结果:
用户的主题分布:
[[-0.22279713 0.57098887]
[-0.51723555 0.4274751 ]
[ 0.82462029 0.38459931]
[ 0.05319973 0.58593526]]
奇异值:
[[ 6.39167145 0. ]
[ 0. 17.71392084]]
物品的主题分布:
[[-0.53728743 0.24605053 -0.40329582 0.67004393 0.05969518 0.18870999]
[ 0.44721867 0.35861531 0.29246336 0.20779151 0.50993331 0.53164501]]
重建评分矩阵,并过滤掉已经评分的物品:
[[ 0. 0. 0. 1.14752376 0. 0. ]
[ 0. 1.90208543 0. -0.64171368 0. 0. ]
[ 0.21491237 0. -0.13316888 0. 0. 0. ]
[ 0. 0. 0. 0. 0. 0. ]]
可视化一下:
经典SVD + 协同过滤
0代表没有评分,但是上面的方法(如何推荐这一节的方法4)又确实把0看作了评分,所以最终得到的只是一个推荐值(而且总体都偏小),而无法当作预测的评分。在How do I use the SVD in collaborative filtering?有这方面的讨论。
SVD简要介绍
SVD的目标是将m*n大小的矩阵A分解为三个矩阵的乘积:
A=U∗S∗VTA=U∗S∗VT
U和V都是正交矩阵,大小分别是m*m、n*n。S是一个对角矩阵,大小是m*n,对角线存放着奇异值,从左上到右下依次减小,设奇异值的数量是r。
取k,k<<r。
取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有
Ak=Uk∗Sk∗VTkAk=Uk∗Sk∗VkT
AkAk可以认为是AA的近似。
下面的算法将协同过滤和SVD结合了起来。
Item-based Filtering Enhanced by SVD
这个算法来自下面这篇论文:
Vozalis M G, Margaritis K G. Applying SVD on Generalized Item-based Filtering[J]. IJCSA, 2006, 3(3): 27-51.
1、 设评分矩阵为R,大小为m*n,m个用户,n个物品。R中元素rijrij代表着用户uiui对物品ijij的评分。
2、 预处理R,消除掉其中未评分数据(即值为0)的评分。
- 计算
R中每一行的平均值(平均值的计算中不包括值为0的评分),令Rfilled−in=RRfilled−in=R,然后将Rfilled−inRfilled−in中的0设置为该行的平均值。 - 计算
R中每一列的平均值(平均值的计算中不包括值为0的评分)riri,Rfilled−inRfilled−in中的所有元素减去对应的riri,得到正规化的矩阵RnormRnorm。(norm,即normalized)。
3、 对RnormRnorm进行奇异值分解,得到: Rnorm=U∗S∗VTRnorm=U∗S∗VT
4、 设正整数k,取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有
Rred=Uk∗Sk∗VTkRred=Uk∗Sk∗VkT
red,即dimensionality reduction中的reduction。可以认为k是指最重要的k个主题。定义RredRred中元素rrijrrij用户i对物品j在矩阵RredRred中的值。
5、 Uk∗S12kUk∗Sk12,是用户相关的降维后的数据,其中的每行代表着对应用户在新特征空间下位置。S12k∗VTkSk12∗VkT,是物品相关的降维后的数据,其中的每列代表着对应物品在新特征空间下的位置。
S12k∗VTkSk12∗VkT中的元素mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。(共有k个主题)。
6、 获取物品之间相似度。
根据S12k∗VTkSk12∗VkT计算物品之间的相似度,例如使用余弦相似度计算物品j和f的相似度:

相似度计算出来后就可以得到每个物品最相似的若干物品了。
7、 使用下面的公式预测用户a对物品j的评分:
这个公式里有些变量的使用和上面的冲突了(例如k)。 ll是指取物品j最相似的ll个物品。 mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。 simjksimjk是物品j和物品k的相似度。 RredRred中元素rrakrrak是用户a对物品k在矩阵RredRred中对应的评分。ra¯ra¯是指用户a在评分矩阵RR中评分的平均值(平均值的计算中不包括值为0的评分)。
参考
SVD Recommendation System in Ruby 这篇文章使用的数据来自该链接,里面处理新用户的方法表示没看懂。
How do I use the SVD in collaborative filtering?
Vozalis M G, Margaritis K G. Applying SVD on Generalized Item-based Filtering[J]. IJCSA, 2006, 3(3): 27-51.
NMF和SVD在推荐系统中的应用(实战)的更多相关文章
- SVD在推荐系统中的应用详解以及算法推导
SVD在推荐系统中的应用详解以及算法推导 出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...
- 多维数组分解----SVD在推荐系统中的应用-
http://www.janscon.com/multiarray/rs_used_svd.html [声明]本文主要参考自论文<A SINGULAR VALUE DECOMPOSITION A ...
- SVD在推荐系统中的应用
一.奇异值分解SVD 1.SVD原理 SVD将矩阵分为三个矩阵的乘积,公式: 中间矩阵∑为对角阵,对角元素值为Data矩阵特征值λi,且已经从大到小排序,即使去掉特征值小的那些特征,依然可以很好地重构 ...
- 从SVD到推荐系统
最近在学习推荐系统(Recommender System),跟大部分人一样,我也是从<推荐系统实践>学起,同时也想跟学机器学习模型时一样使用几个开源的python库玩玩.于是找到了surp ...
- SVD在餐馆菜肴推荐系统中的应用
SVD在餐馆菜肴推荐系统中的应用 摘要:餐馆可以分为很多类别,比如中式.美式.日式等等.但是这些类别不一定够用,有的人喜欢混合类别.对用户对菜肴的点评数据进行分析,可以提取出区分菜品的真正因素,利用这 ...
- SVD++:推荐系统的基于矩阵分解的协同过滤算法的提高
1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:
- 使用矩阵分解(SVD)实现推荐系统
http://ling0322.info/2013/05/07/recommander-system.html 这个学期Web智能与社会计算的大作业就是完成一个推荐系统参加百度电影推荐算法大赛,成绩按 ...
- RS:推荐系统中的数据稀疏和冷启动问题
如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题. 冷启动问题主要分为三类: (1) 用户冷启动:如何给新用户做个性化推荐的问题,新用户刚使 ...
- 14、RALM: 实时 look-alike 算法在推荐系统中的应用
转载:https://zhuanlan.zhihu.com/p/71951411 RALM: 实时 look-alike 算法在推荐系统中的应用 0. 导语 本论文题为<Real-time At ...
随机推荐
- 一个想法(续四):IT技术联盟创业众筹进度公示
为了将整个创业过程更加的公开公正透明化,特开此篇用于展示众筹进度. 首轮众筹进度如下:(每天24点更新1次)
- Swift 2.0 自定义cell和不同风格的cell
昨天我们写了使用系统的cell怎样创建tableView,今天我们再细分一下,就是不同风格的cell,我们怎写代码.先自己创建一个cell,继承于UItableviewcell 我们看看 cell 里 ...
- Docker网络代理设置
背景 在一些实验室环境,服务器没有直接连接外网的权限,需要通过网络代理.我们通常会将网络代理直接配置在/etc/environment./etc/profile之类的配置文件中,这对于大部分操作都是可 ...
- 可能是一份没什么用的爬虫代理IP指南
写在前面 做爬虫的小伙伴一般都绕不过代理IP这个问题. PS:如果还没遇到被封IP的场景,要不就是你量太小人家懒得理你,要不就是人家压根不在乎... 爬虫用户自己是没有能力维护一系列的代理服务器和代理 ...
- 二cha树
void porder(BTree *b) { BTree *St[MaxSize],*p; ; if(b!=NULL) { top++; St[top]=b; ) { p=St[top]; top- ...
- 3D Touch开发
一.3d Touch 官方文档介绍 1.A user can now press your Home screen icon to immediately access functionality p ...
- java集合框架04——LinkedList和源码分析
上一章学习了ArrayList,并分析了其源码,这一章我们将对LinkedList的具体实现进行详细的学习.依然遵循上一章的步骤,先对LinkedList有个整体的认识,然后学习它的源码,深入剖析Li ...
- awk,sed文本处理案例
#!/bin/bash ############################################################################# #针对一个多级目录下 ...
- Android系统--Binder系统具体框架分析(二)Binder驱动情景分析
Android系统--Binder系统具体框架分析(二)Binder驱动情景分析 1. Binder驱动情景分析 1.1 进程间通信三要素 源 目的:handle表示"服务",即向 ...
- SecureCRT文件传输模式
前言 如下图所示,SecureCRT6.5.0 有4种文件传输模式. 1)ASCII:最快的传输模式,但只能传文本 2)Xmodem:非常古老的传输协议速度较慢,但由于使用了CRC错误侦测方法,传输的 ...