1.介绍

  floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题。

2.思想:

  Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

举个例子:已知下图,

  如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}

  接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];

  最后允许通过所有顶点作为中转,代码如下:

for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同

3.代码模板:

#include <stdio.h>
#define inf 0x3f3f3f3f
int map[][];
int main()
{
int k,i,j,n,m;
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(i==j)
map[i][j]=;
else
map[i][j]=inf;
int a,b,c;
//读入边
for(i=; i<=m; i++)
{
scanf("%d %d %d",&a,&b,&c);
map[a][b]=c;//这是一个有向图
} //Floyd-Warshall算法核心语句
for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(map[i][j]>map[i][k]+map[k][j] )
map[i][j]=map[i][k]+map[k][j]; //输出最终的结果,最终二维数组中存的即使两点之间的最短距离
for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
printf("%10d",map[i][j]);
}
printf("\n");
}
return ;
}

最短路之Floyd算法的更多相关文章

  1. HDOJ 1217 Arbitrage(拟最短路,floyd算法)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  2. 最短路 之 floyd 算法

    Floyd 在我认为这是最短路算法中最简单的一个,也是最low的一个. 所以我们组一位大佬给他起了一个新的名字,叫做超时!!! (其实如果数据范围很小的话,这个算法还是蛮好用的!!) 这个算法比较简单 ...

  3. 21.多源最短路(floyd算法)

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 已知n个点(n<=100),给你n*n的方阵,a[i,j] ...

  4. 最短路,floyd算法,图的最短路径

    题目描述: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线 ...

  5. 图论算法(二)最短路算法:Floyd算法!

    最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...

  6. (poj 3660) Cow Contest (floyd算法+传递闭包)

    题目链接:http://poj.org/problem?id=3660 Description N ( ≤ N ≤ ) cows, conveniently numbered ..N, are par ...

  7. 最短路--floyd算法模板

    floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...

  8. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  9. 多源最短路Floyd 算法————matlab实现

    弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...

随机推荐

  1. v9 调用模型中新增的字段

    在模型中新增字段的时候,可以选择“是否为主表”. 若选是,则前台调用可直接通过字段名调用. 若选否,在前台调用是应在{pc:content}中添加 moreinfo="1",表示允 ...

  2. Codewars练习笔记·1 - 6.23

    Codewars地址:https://www.codewars.com/ 笔记资料来源:JavaScript高级程序设计. 欢迎和大家一起来讨论~   基础练习(1):   我的解答为: class ...

  3. 找到你在网页中缓存起来的flash文件

    通过IE浏览器工具->Internet选项->常规->设置->Internet临时文件->查看文件(找到你在网页中缓存起来的flash文件)

  4. php取出数组中的最大值

    <?php /** * @param $arr * @return mixed * php取出数组中的最大值(方法一) */ function getMax($arr){ $max=$arr[0 ...

  5. cache 和 buffer的区别

    cache 和 buffer的区别: Cache:高速缓存,是位于CPU与主内存间的一种容量较小但速度很高的存储器.由于CPU的速度远高于主内存, CPU直接从内存中存取数据要等待一定时间周期,Cac ...

  6. Linux终端类型

    unix是一个多用户多任务的操作系统.早期电脑昂贵,所以当时使用便宜的设备连接到电脑上(当时还没有键盘和显示器,使用纸带和卡片来输入输出)来使用操作系统,这个便宜的设备就是终端,也可以认为终端是一种控 ...

  7. Azure MySQL PaaS (3) 创建MySQL异地只读数据库 (Master-Slave)

    <Windows Azure Platform 系列文章目录> Azure MySQL PaaS服务提供异地只读的功能,我们可以在主站点,比如Azure上海数据中心,创建MySQL主节点. ...

  8. ifame高度自动适应子页面内容

    被这个问题折磨了好久,试了很多方法都不行,总算解决了,记录一下. <div class="iframe-pro" id="iframe-proid"> ...

  9. TortoiseGit上传项目到github方法(超简单)

    Github是咱广大开发者用的非常多的项目版本管理网站,项目托管可以是私人的(private)或者公开的(public),私人的收费,一个月7美金.咱这里就只说我们个人使用的,一般都是代码对外开放的: ...

  10. 百度BAE环境搭建

    一.申请 1.http://bce.baidu.com/index.html 2.购买应用引擎BAE需要实名认证:http://console.bce.baidu.com/qualify/#/qual ...