1.介绍

  floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题。

2.思想:

  Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

举个例子:已知下图,

  如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}

  接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];

  最后允许通过所有顶点作为中转,代码如下:

for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同

3.代码模板:

#include <stdio.h>
#define inf 0x3f3f3f3f
int map[][];
int main()
{
int k,i,j,n,m;
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(i==j)
map[i][j]=;
else
map[i][j]=inf;
int a,b,c;
//读入边
for(i=; i<=m; i++)
{
scanf("%d %d %d",&a,&b,&c);
map[a][b]=c;//这是一个有向图
} //Floyd-Warshall算法核心语句
for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(map[i][j]>map[i][k]+map[k][j] )
map[i][j]=map[i][k]+map[k][j]; //输出最终的结果,最终二维数组中存的即使两点之间的最短距离
for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
printf("%10d",map[i][j]);
}
printf("\n");
}
return ;
}

最短路之Floyd算法的更多相关文章

  1. HDOJ 1217 Arbitrage(拟最短路,floyd算法)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  2. 最短路 之 floyd 算法

    Floyd 在我认为这是最短路算法中最简单的一个,也是最low的一个. 所以我们组一位大佬给他起了一个新的名字,叫做超时!!! (其实如果数据范围很小的话,这个算法还是蛮好用的!!) 这个算法比较简单 ...

  3. 21.多源最短路(floyd算法)

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 已知n个点(n<=100),给你n*n的方阵,a[i,j] ...

  4. 最短路,floyd算法,图的最短路径

    题目描述: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线 ...

  5. 图论算法(二)最短路算法:Floyd算法!

    最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...

  6. (poj 3660) Cow Contest (floyd算法+传递闭包)

    题目链接:http://poj.org/problem?id=3660 Description N ( ≤ N ≤ ) cows, conveniently numbered ..N, are par ...

  7. 最短路--floyd算法模板

    floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...

  8. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  9. 多源最短路Floyd 算法————matlab实现

    弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...

随机推荐

  1. 2.配置Spring+SpringMvc+Mybatis(分库or读写分离)--Intellij IDAE 2016.3.5

    建立好maven多模块项目后,开始使用ssm传统的框架: 1.打开总工程下的pom.xml文件:添加如下代码: <!--全局的所有版本号定义--> <properties> & ...

  2. js函数验证方式:验证是否是数字,支持小数,负数

    验证 datatype="/^\d+(\.\d+)?$/" validatform验证是否是数字 支持小数点 datatype="d" 貌似支持小数 js函数验 ...

  3. 关于cookie与session的理解

    服务器端并不能捕获客户端的浏览器关闭事件,因此你关闭浏览器以后,服务器端那个Session还是存在的,要超时以后才被回收,启动一个新的浏览器会启动一个新的session,所以他不认你了session永 ...

  4. 7.如何发布vue项目到服务器

    1.确保程序是可运行的,即npm run dev可以运行 2.把index.js修改 3.运行npm命令npm run build 4.生成的dist文件为 直接点击index.html就能运行,部署 ...

  5. 4.jsp的内置对象

    1.jsp有九大内置对象 out request response session application page pagecontext exception config 2.用户发请求 requ ...

  6. Hibernate基础知识总结

    Hibernate是JDBC的轻量级的对象封装(encapsulation),它是一个独立的对象持久persistence层框架. hibernate要做的事,就是让对象投影到关系数据库中,然后实施化 ...

  7. JavaScript 语言基础

    js语言基础 一 基本知识 UniCode编码 区分大小写(HTML不区分/XHTML区分) Unicode转义序列 \uxxxx (\u加4位16进制表示) 注释 单行注释:// 多行注释:/* * ...

  8. createjs 小游戏开发实战

    [转载请注明出处] 紧接着上一篇文章createjs入门:http://www.cnblogs.com/beidan/p/7055422.html 这里来一篇小游戏实战篇. 游戏整体思路实现 1. 实 ...

  9. 解决window7 x64位Anaconda启动报错:AttributeError: '_NamespacePath' object has no attribute 'sort'

    最近论文需要用到python做数据分析,python语法简单,但是Windows下安装第三方包恶心的要命,statsmodels用pip死活安装不上,网上查了说包相互依赖windows下的pip不能下 ...

  10. JavaScript图片翻转

    <script type="text/javascript"> /** * 注册函数f,当文档加载问成时执行这个函数f * 如果文件已经载入完成,尽快以异步方式执行它 ...