转载自http://blog.csdn.net/yfkiss/article/details/6943682/

1. 概述
gossip,顾名思义,类似于流言传播的概念,是一种可以按照自己的期望,自行选择与之交换信息的节点的通信方式
gossip, or anto-entropy,  is an attractive way of replicating state that does not have strong consistency requirements

2. 算法描述

假设有 {p, q, ...} 为协议参与者。 每个参与者都有关于一个自己信息的表。
用编程语言可以描述为: 
记 InfoMap = Map<Key, (Value, Version)>, 那么每个参与者要维护一个 InfoMap 类型的变量 localInfo。 同时每一个参与者要知道所有其他参与者的信息, 即要维护一个全局的表,即 Map<participant, InfoMap> 类型的变量 globalMap。每个参与者更新自己的 localInfo, 而由 Gossip 协议负责将更新的信息同步到整个网络上
每个节点和系统中的某些节点成为 peer (如果系统的规模比较小,和系统中所有的其他节点成为 peer)。 有三种不同的同步信息的方法:
1)push-gossip: 最简单的情况下, 一个节点 p 向 q 发送整个 GlobalMap
2)pull-gossip: p 向 q 发送 digest, q 根据 digest 向 p 发送 p 过期的 (key, (value, version)) 列表
3)push-pull-gossip:与pull-gossip类似,只是多了一步,A再将本地比B新的数据推送给B,B更新本地

3. 特点
gossip不要求节点知道所有其他节点,因此具有去中心化的特点,节点之间完全对等,不需要任何的中心节点。
gossip算法又被称为反熵(Anti-Entropy),熵是物理学上的一个概念,代表杂乱无章,而反熵就是在杂乱无章中寻求一致,这充分说明了Gossip的特点:
在一个有界网络中,每个节点都随机地与其他节点通信,经过一番杂乱无章的通信,最终所有节点的状态都会达成一致。每个节点可能知道所有其他节点,也可能仅知道几个邻节点,只要这些节可以通过网络连通,最终他们的状态都是一致的。
gossip算法是一个最终一致性算法,其无法保证在某个时刻所有节点状态一致,但可以保证在”最终“所有节点一致,”最终“是一个现实中存在,但理论上无法证明的时间点

4. 协调机制
协调机制是讨论在每次2个节点通信时,如何交换数据能达到最快的一致性,也即消除两个节点的不一致性。
协调所面临的最大问题是,因为受限于网络负载,不可能每次都把一个节点上的数据发送给另外一个节点,也即每个Gossip的消息大小都有上限。在有限的空间上有效率地交换所有的消息是协调要解决的主要问题。
“Efficient Reconciliation and Flow Control for Anti-Entropy Protocols”中描述了两种同步机制
1)precise reconciliation
precise reconciliation希望在每次通信周期内都非常准确地消除双方的不一致性,具体表现为相互发送对方需要更新的数据,因为每个节点都在并发与多个节点通信,理论上很难做到。precise reconciliation需要给每个数据项独立地维护自己的version,在每次交互是把所有的(key,value,version)发送到目标进行比对,从而找出双方不同之处从而更新。但因为Gossip消息存在大小限制,因此每次选择发送哪些数据就成了问题。当然可以随机选择一部分数据,也可确定性的选择数据。对确定性的选择而言,可以有最老优先(根据版本)和最新优先两种,最老优先会优先更新版本最新的数据,而最新更新正好相反,这样会造成老数据始终得不到机会更新,也即饥饿。
2)Scuttlebutt Reconciliation
Scuttlebutt Reconciliation 与precise reconciliation不同之处是,Scuttlebutt Reconciliation不是为每个数据都维护单独的版本号,而是为每个节点上的宿主数据维护统一的version。比如节点P会为(p1,p2,...)维护一个一致的全局version,相当于把所有的宿主数据看作一个整体,当与其他节点进行比较时,只需比较这些宿主数据的最高version,如果最高version相同说明这部分数据全部一致,否则再进行precise reconciliation。

5. Merkle tree
信息同步无疑是gossip的核心,Merkle tree(MT)是一个非常适合同步的数据结构。
简单来说 Merkle tree就是一颗hash树,在这棵树中,叶子节点的值是一些hash值、非叶节点的值均是由其子节点值计算hash得来的,这样,一旦某个文件被修改,修改时间的信息就会迅速传播到根目录。需要同步的系统只需要不断查询跟节点的hash,一旦有变化,顺着树状结构就能够在logN级 别的时间找到发生变化的内容,马上同步。
在Dynamo中,每个节点保存一个范围内的key值,不同节点间存在有相互交迭的key值范围。在去熵操作中,考虑的仅仅是某两个节点间共有的key值范围。MT的叶子节点即是这个共有的key值范围内每个key的hash,通过叶子节点的hash自底向上便可以构建出一颗MT。Dynamo首先比对MT根处的hash,如果一致则表示两者完全一致,否则将其子节点交换并继续比较的过程。

6.总结
Gossip常见于大规模、无中心的网络系统,可以用于众多能接受“最终一致性”的领域:失败检测、路由同步、Pub/Sub、动态负载均衡。

7.参考文献
paper: Efficient Reconciliation and Flow Control for Anti-Entropy Protocols
http://tianya23.blog.51cto.com/1081650/530743
http://ultimatearchitecture.net/index.php/2010/09/12/merkle-tree/

[转载] Gossip算法学习的更多相关文章

  1. <2014 05 09> Lucida:我的算法学习之路

    [转载] 我的算法学习之路 关于 严格来说,本文题目应该是我的数据结构和算法学习之路,但这个写法实在太绕口——况且CS中的算法往往暗指数据结构和算法(例如算法导论指的实际上是数据结构和算法导论),所以 ...

  2. 数据挖掘算法学习(八)Adaboost算法

    本文不定期更新.原创文章,转载请附上链接http://blog.csdn.net/iemyxie/article/details/40423907 谢谢 Adaboost是一种迭代算法,其核心思想是针 ...

  3. 【算法学习笔记】Meissel-Lehmer 算法 (亚线性时间找出素数个数)

    「Meissel-Lehmer 算法」是一种能在亚线性时间复杂度内求出 \(1\sim n\) 内质数个数的一种算法. 在看素数相关论文时发现了这个算法,论文链接:Here. 算法的细节来自 OI w ...

  4. 【转载】Java学习笔记

    转载:博主主页 博主的其他笔记汇总 : 学习数据结构与算法,学习笔记会持续更新: <恋上数据结构与算法> 学习Java虚拟机,学习笔记会持续更新: <Java虚拟机> 学习Ja ...

  5. Gossip算法

    Gossip算法因为Cassandra而名声大噪,Gossip看似简单,但要真正弄清楚其本质远没看起来那么容易.为了寻求Gossip的本质,下面的内容主要参考Gossip的原始论文:<<E ...

  6. DSP算法学习-过采样技术

    DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207 ...

  7. 算法学习之C语言基础

    算法学习,先熟悉一下C语言哈!!! #include <conio.h> #include<stdio.h> int main(){ printf(+); getch(); ; ...

  8. Python之路,Day21 - 常用算法学习

    Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...

  9. C / C++算法学习笔记(8)-SHELL排序

    原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...

随机推荐

  1. vue2+webpack使用1--初识默认展示页面

    1 从安装好的展示 vue2+webpack项目开始 2 关键目录及文件 3 关系图 4 类比nodejs项目的理解   // src/main.js import Vue from 'vue' // ...

  2. java web mysql 入门知识讲解

     MySQL学习笔记总结 一.SQL概述: SQL:Structured Query Language的缩写(结构化查询语言) SQL工业标准:由ANSI(ISO核心成员) 按照工业标准编写的SQ ...

  3. Python实现采集wordpress整站数据的爬虫

    最近爱上了python,就非常喜欢使用python来练手,在上次的基础上完善一下代码,实现采集wordpress程序的网站的整站数据的爬虫程序,本站也是采用的wordpress,我就拿吾八哥网(htt ...

  4. Java中数组的遍历

    (I)标准for循环遍历数组 例如代码片段: int [] nums = new int [] {0,1,2,3,4,5,6,7,8,9}; for(int i=0;i<11;i++){ Sys ...

  5. UVa1595,Symmetry

    这题居然是1A过的.....最近无比失落的心情顿时愉悦起来~ 将数据全部读入 先用二维数据来存储坐标(先把题做出来再说= =) 题目中的x,y的坐标范围是-1W到1W....在数组下标里是不能用负数保 ...

  6. MySQL基础函数

    MySQL数据库提供了很多函数包括: 数学函数: 字符串函数: 日期和时间函数: 条件判断函数: 系统信息函数: 加密函数: 格式化函数: 一.数学函数 数学函数主要用于处理数字,包括整型.浮点数等. ...

  7. 优先队列(存储结构数组)--Java实现

    /*优先队列--是对队列的一种改进 *要存储的数据存在优先级--数值小的优先级高--在队头 *优先队列的实现 *1.数组:适合数据量小的情况(没有用rear+front实现) *优先队列头在items ...

  8. LeetCode 581. Shortest Unsorted Continuous Subarray (最短无序连续子数组)

    Given an integer array, you need to find one continuous subarray that if you only sort this subarray ...

  9. LeetCode 62. Unique Paths(所有不同的路径)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  10. Spring in action记录

    最近一段时间重新学习了一遍SPRING,现在对这些笔记整理一下,一来算是对之前的学习有一个交代,二来当是重新学习一次,三来可以留下备份 这次学习中以SPRING IN ACTION 4这学习资料,整书 ...