ImageNet http://www.image-net.org ,图像标注信息数据库。每年举办大规模视觉识别挑战赛(ILSVRC)。基于ImageNet数据库构建完成目标自动检测分类任务系统。2012年,SuperVision提交卷积神经网络(CNN)。

CNN可用于任意类型数据张量(各分量与相关分量有序排列在多维网格),当前主要用于计算机视觉。语音识别,输入按录音时间顺序排列声音频率单行网络张量。图像宽高次序排列网格像素分量张量。

训练CNN模型数据集Stanford's Gogs Dataset: http://vision.stanford.edu/aditya86/ImageNetDogs/ 。包含不同品种狗图像及品种标签。模型目标:给定一幅图像,预测狗品种。大量非训练集图像创建测试集。数据集:训练集、测试集、验证集。数据集中大部分构成训练集。测试集了解模型对未训练数据表现。交叉验证集比较客观,对图像预处理(对比度调整、栽剪)划分原始数据集,用完全相同输入流水线。

卷积神经网络至少包含一个层(tf.nn.conv2d)。计算输入f与一组可配置卷积核g的卷积,生成层输出。卷积核(滤波器)应用张量所有点,输入张量上滑动卷积核生成过滤波处理张量。图像每个元素应用特殊卷积核,输出刻画所有边缘新图像。输入张量是图像,张量每个点对应像素红、绿、蓝色值。卷积核遍历图像像素,边缘像素卷积输出值增大。神经元簇依据训练模式激活。训练,多个不同层级联,梯度下降法变体调节卷积核(滤波器)权值。

CNN架构,卷积层(tf.nn.conv2d)、非线性变换层(tf.nn.relu)、池化层(tf.nn.max_pool)、全连接层(tf.nn.matmul)。突出重要信息,忽略噪声。批量加载图像,同时处理多幅图像。数据结构包含卷积运算整批图像全部信息。TensorFlow输入流水线(读取解码文件)针对整批数据多幅图像处理专门格式,图像所需信息([image_batch_size,image_height,image_width,image_channels])。

import tensorflow as tf
image_batch = tf.constant([
[#第1幅图像
[[0, 255, 0], [0, 255, 0], [0, 255, 0]],
[[0, 255, 0], [0, 255, 0], [0, 255, 0]]
],
[#第2幅图像
[[0, 0, 255], [0, 0, 255], [0, 0, 255]],
[[0, 0, 255], [0, 0, 255], [0, 0, 255]]
]
])
image_batch.get_shape()
sess = tf.Session()
sess.run(image_batch)[0][0][0]

第1组维度图像数量。第2组维度图像高度。第3组维度图像宽度。第4组维度颜色通道数量。每个像素索引映射图像宽高维度。

参考资料:
《面向机器智能的TensorFlow实践》

欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz

学习笔记TF012:卷积网络简述的更多相关文章

  1. 学习笔记TF052:卷积网络,神经网络发展,AlexNet的TensorFlow实现

    卷积神经网络(convolutional neural network,CNN),权值共享(weight sharing)网络结构降低模型复杂度,减少权值数量,是语音分析.图像识别热点.无须人工特征提 ...

  2. CNN学习笔记:卷积神经网络

    CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...

  3. CNN学习笔记:卷积运算

    CNN学习笔记:卷积运算 边缘检测 卷积 卷积是一种有效提取图片特征的方法.一般用一个正方形卷积核,遍历图片上的每一个像素点.图片与卷积核重合区域内相对应的每一个像素值乘卷积核 .内相对应点的权重,然 ...

  4. python3.4学习笔记(十四) 网络爬虫实例代码,抓取新浪爱彩双色球开奖数据实例

    python3.4学习笔记(十四) 网络爬虫实例代码,抓取新浪爱彩双色球开奖数据实例 新浪爱彩双色球开奖数据URL:http://zst.aicai.com/ssq/openInfo/ 最终输出结果格 ...

  5. 【学习笔记】Iperf3网络性能测试工具

    [学习笔记]Iperf3网络性能测试工具 网络性能评估主要是监测网络带宽的使用率,将网络带宽利用最大化是保证网络性能的基础,但是由于网络设计不合理.网络存在安全漏洞等原因,都会导致网络带宽利用率不高. ...

  6. 卷积神经网络学习笔记——轻量化网络MobileNet系列(V1,V2,V3)

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和Mo ...

  7. 深度学习笔记 (一) 卷积神经网络基础 (Foundation of Convolutional Neural Networks)

    一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“ ...

  8. TensorFlow学习笔记10-卷积网络

    卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数 ...

  9. 【学习笔记】卷积神经网络 (CNN )

    前言 对于卷积神经网络(cnn)这一章不打算做数学方面深入了解,所以只是大致熟悉了一下原理和流程,了解了一些基本概念,所以只是做出了一些总结性的笔记. 感谢B站的视频 https://www.bili ...

随机推荐

  1. POPTEST 150801 祝大家前途似锦

    POPTEST 150801 祝大家前途似锦   PT20150801学员不断在就业,同学们走好,远兵辛苦了!!!

  2. (原)centos7安装和使用greenplum4.3.12(详细版)

     对于很多IT人来说GREENPLUM是个陌生的名字.简单的说它就是一个与ORACLE, DB2一样面向对象的关系型数据库.我们通过标准的SQL可以对GP中的数据进行访问存取. 本质上讲GREENPL ...

  3. ios ALAssetsLibrary简单的使用

    关于ALAssetsLibrary的简单使用有两个方面: 第一:存储图片/视频方法如下: // With a UIImage, the API user can use -[UIImage CGIma ...

  4. 线段树(hdu 1754 i hate it)

    I Hate It Time Limit: 3000MS     Memory Limit: 32768 K Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分 ...

  5. swust oj(0088)表达式的转换

    表达式的转换(0088) Time limit(ms): 5000 Memory limit(kb): 65535 Submission: 435 Accepted: 93 Accepted 16级卓 ...

  6. Why we don’t recommend using List<T> in public APIs

    不推荐List<T>做API原因有如下两点:1.首先List<T> 设计之初就没有设计成可扩展的,我们不能重新其任何方法.这就意味着,我们操作List<T>的时候却 ...

  7. 保证Android后台不被杀死的几种方法

    由于各种原因,在开发Android应用时会提出保证自己有一个后台一直运行的需求,如何保证后台始终运行,不被系统因为内存低杀死,不被任务管理器杀死,不被软件管家等软件杀死等等还是一个比较困难的问题.网上 ...

  8. PTA自测-3 数组元素循环右移问题

    自测-3 数组元素循环右移问题  一个数组A中存有N(N>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(M≥0)个位置,即将A中的数据由(A0A1···A​N-1​​)变换为 ...

  9. 【Uva 10498】满意值

    Description Kaykobad教授把为ACM选手买饭的任务交给了Nasa.Nasa决定买n种不同的食物.然后他询问了m名选手对每种食物的需求量.选手们当然不会给出任何符合逻辑的回答,他们只是 ...

  10. eNSP自学入门(基础)

    写了上篇博客之后,就立即投入到了eNSP的怀抱之中了,自己从零基础,入门到现在.也学了不少东西,在这里和大家分享一下. 说一下学习的过程吧,老师说做网络工程的课程设计用eNSP,关于这个软件什么都没有 ...