Best Time to Buy and Sell Stock | & || & III
Best Time to Buy and Sell Stock I
Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Example
Given array [3,2,3,1,2], return 1.
分析:因为卖出总是在买入后,所以,只要有更低的买入价格,我们就可以更新买入价格,如果价格比买入价格低,我们就更新tempMax。看代码后即可明白。
public class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= ) return ;
int tempMax = ;
int buyPrice = prices[];
for (int i = ; i < prices.length; i++) {
if (prices[i] > buyPrice) {
tempMax = Math.max(tempMax, prices[i] - buyPrice);
} else {
buyPrice = prices[i];
}
}
return tempMax;
}
}
Best Time to Buy and Sell Stock II
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Example
Given an example [2,1,2,0,1], return 2
分析:既然允许unlimited 交易,那么,每个价格波峰都是卖出点,每个价格波谷都是买入点。
public class Solution {
public int maxProfit(int[] prices) {
// corner cases
if (prices == null || prices.length <= ) return ;
int buyPrice = prices[], totalProfit = ;
for (int i = ; i < prices.length; i++) {
if (prices[i] < prices[i - ]) {
totalProfit += prices[i - ] - buyPrice;
buyPrice = prices[i];
}
}
totalProfit += prices[prices.length - ] - buyPrice;
return totalProfit;
}
}
public class Solution {
public int maxProfit(int[] prices) {
return maxProfit(prices, );
}
public int maxProfit(int[] prices, int fee) {
if (prices.length <= ) return ;
int days = prices.length;
int[] buy = new int[days];
int[] sell = new int[days];
buy[] = -prices[] - fee;
for (int i = ; i< days; i++) {
// keep the same as day i-1, or buy from sell status at day i-1
buy[i] = Math.max(buy[i - ], sell[i - ] - prices[i] - fee);
// keep the same as day i-1, or sell from buy status at day i-1
sell[i] = Math.max(sell[i - ], buy[i - ] + prices[i]);
}
return sell[days - ];
}
}
Best Time to Buy and Sell Stock III
Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most two transactions.
Example
Given an example prices = [4,4,6,1,1,4,2,5], return 6.
分析:
既然题目说,最多只能交易两次,所以,可能是一次,也可能是两次。如果是只交易一次,那么我们就从开始点(0)到结束点(prices.length - 1) 找出只做一次交易的maxProfit. 如果只做两次,那么两次只能在 (0, k) 和 (k + 1, prices.length - 1) 产生,而k的范围是 0 <= k <= prices.length - 1.
class Solution {
/**
* @param prices: Given an integer array
* @return: Maximum profit
* cnblogs.com/beiyeqingteng/
*/
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= ) return ;
int max = ;
for (int i = ; i < prices.length; i++) {
if (i == prices.length - ) {
max = Math.max(max, maxProfit(prices, , i));
} else {
max = Math.max(max, maxProfit(prices, , i) + maxProfit(prices, i + , prices.length - ));
}
}
return max;
}
// once one transaction is allowed from point i to j
private int maxProfit(int[] prices, int i, int j) {
if (i >= j) return ;
int profit = ;
int lowestPrice = prices[i];
for (int k = i + ; k <= j; k++) {
if (prices[k] > lowestPrice) {
profit = Math.max(profit, prices[k] - lowestPrice);
} else {
lowestPrice = prices[k];
}
}
return profit;
}
};
另一种方法,直接倒过来,考虑从当前到最后一天能够只做一次交易的时候,能够获取的最大利益。这种情况下,我们要找到最大的sellPrice.
public class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= ) return ;
int max = ;
int[] maxProfit = maxProfitForward(prices);
int[] maxLoss = maxProfitBackward(prices);
for (int i = ; i < prices.length; i++) {
if (i == prices.length - ) {
max = Math.max(max, maxProfit[i]);
} else if (i == ) {
max = Math.max(max, maxLoss[i]);
} else {
max = Math.max(max, maxProfit[i] + maxLoss[i]);
}
}
return max;
}
// once one transaction is allowed from point i to j
private int[] maxProfitBackward(int[] prices) {
int sellPrice = prices[prices.length - ];
int[] maxLoss = new int[prices.length];
int tempMin = ;
for (int i = prices.length - ; i >= ; i--) {
if (prices[i] < sellPrice) {
tempMin = Math.max(tempMin, sellPrice - prices[i]);
} else {
sellPrice = prices[i];
}
maxLoss[i] = tempMin;
}
return maxLoss;
}
private int[] maxProfitForward(int[] prices) {
int buyPrice = prices[];
int[] maxProfit = new int[prices.length];
int tempMax = ;
for (int i = ; i < prices.length; i++) {
if (prices[i] > buyPrice) {
tempMax = Math.max(tempMax, prices[i] - buyPrice);
} else {
buyPrice = prices[i];
}
maxProfit[i] = tempMax;
}
return maxProfit;
}
}
Best Time to Buy and Sell Stock IV
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
第一种方法:暴力解法
因为最多可以交易 k 次,在prices array里,我们总能够找到一个点 p, 从p + 1 到 prices array的最后一个元素,最多交易次数为1, 那么我们就可以递归调用原函数。
public class Solution {
public int maxProfit(int k, int[] prices) {
return helper(k, prices, , prices.length - );
}
private int helper(int k, int[] prices, int start, int end) {
if (start >= end || k == ) return ;
if (k == ) {
int buyPrice = prices[start];
int maxProfit = ;
for (int i = start + ; i <= end; i++) {
if (prices[i] > buyPrice) {
maxProfit = Math.max(maxProfit, prices[i] - buyPrice);
} else {
buyPrice = prices[i];
}
}
return maxProfit;
} else {
int max = ;
for (int p = start; p <= end; p++) {
max = Math.max(max, helper(k - , prices, start, p) + helper(, prices, p + , end));
}
return max;
}
}
}
Best Time to Buy and Sell Stock | & || & III的更多相关文章
- 27. Best Time to Buy and Sell Stock && Best Time to Buy and Sell Stock II && Best Time to Buy and Sell Stock III
Best Time to Buy and Sell Stock (onlineJudge: https://oj.leetcode.com/problems/best-time-to-buy-and- ...
- LeetCode 笔记23 Best Time to Buy and Sell Stock III
Best Time to Buy and Sell Stock III Say you have an array for which the ith element is the price of ...
- 【leetcode】Best Time to Buy and Sell Stock III
Best Time to Buy and Sell Stock III Say you have an array for which the ith element is the price of ...
- LeerCode 123 Best Time to Buy and Sell Stock III之O(n)解法
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- 【leetcode】123. Best Time to Buy and Sell Stock III
@requires_authorization @author johnsondu @create_time 2015.7.22 19:04 @url [Best Time to Buy and Se ...
- LeetCode: Best Time to Buy and Sell Stock III 解题报告
Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...
- [leetcode]123. Best Time to Buy and Sell Stock III 最佳炒股时机之三
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- LN : leetcode 123 Best Time to Buy and Sell Stock III
lc 123 Best Time to Buy and Sell Stock III 123 Best Time to Buy and Sell Stock III Say you have an a ...
- Leetcode之动态规划(DP)专题-123. 买卖股票的最佳时机 III(Best Time to Buy and Sell Stock III)
Leetcode之动态规划(DP)专题-123. 买卖股票的最佳时机 III(Best Time to Buy and Sell Stock III) 股票问题: 121. 买卖股票的最佳时机 122 ...
随机推荐
- JS模式:策略模式,感觉就是一个闭包存储信息,然后是加一些验证方法--还看了老半天
<!DOCTYPE html> <html> <head> <title></title> </head> <body&g ...
- HNOI2002
对于当天的营业额,你要找到之前的数和他差的绝对值最小的和.由于这个是不断在插入的,所以用伸展树来维护. http://www.lydsy.com/JudgeOnline/problem.php?id= ...
- Hibernate-入门教程
首先了解hibernate的目录结构 . +lib antlr.jar cglib-full.jar asm.jar asm-attrs.jars commons-collections.jar co ...
- 【poj1144】 Network
http://poj.org/problem?id=1144 (题目链接) 题意 求无向图的割点. Solution Tarjan求割点裸题.并不知道这道题的输入是什么意思,也不知道有什么意义= =, ...
- thinkphp ajax添加及删除
写在前面的话:应客户需求需要给后台增加自助添加电影名称和链接的功能,添加后在微信前台能自动读取显示.开发步骤:1.由于是给后台添加一个增加电影及电影链接的功能,所以控制器在Admin下.在路径 App ...
- C标准函数库(常用部分)
- servlet运行流程
servlet运行流程 (2013-06-19 19:16:43) 转载▼ 首先Servlet被部署到Web容器中,当客户端发送调用这个Servlet的请求到达Web容器时,Web容器会先判 ...
- Windows 2008远程多用户登录的配置方法(转载)
在使用Windows2008远程登录功能时,如果需要进行多用户登录,可以采用以下配置方法: 首先要启用远程桌面这一功能:右击“我的电脑”→属性→远程配置→远程桌面,就可以配置相应的远程桌面功能了.下 ...
- 转:Java NIO系列教程(二) Channel
Java NIO的通道类似流,但又有些不同: 既可以从通道中读取数据,又可以写数据到通道.但流的读写通常是单向的. 通道可以异步地读写. 通道中的数据总是要先读到一个Buffer,或者总是要从一个Bu ...
- NPOI在.net中的操作Excel
1.读取 using (FileStream stream = new FileStream(@"c:\客户资料.xls", FileMode.Open, FileAccess.R ...